972 resultados para Outer membrane proteins
Resumo:
FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation.
Resumo:
The granule/perforin exocytosis model of CTL mediated cytolysis proposes that CTL, upon recognition of the specific targets, release the cytolytic, pore-forming protein perforin into the intercellular space which then mediates the cytotoxic effect. However, direct evidence for the involvement of perforin is still lacking, and indeed, recent results even seem incompatible with the model. To determine directly the role of perforin in CTL cytotoxicity, perforin antisense oligonucleotides were exogenously added during the stimulation of mouse spleen derived T cells and human peripheral blood lymphocytes (PBL), respectively. Perforin protein expression in lymphocytes was reduced by up to 65%, and cytotoxicity of stimulated T cells by as much as 69% (5.7-fold). These results provide the first experimental evidence for a crucial role of perforin in lymphocyte mediated cytotoxicity.
Resumo:
Maintenance of the blood system is dependent on dormant haematopoietic stem cells (HSCs) with long-term self-renewal capacity. After injury these cells are induced to proliferate to quickly re-establish homeostasis. The signalling molecules promoting the exit of HSCs out of the dormant stage remain largely unknown. Here we show that in response to treatment of mice with interferon-alpha (IFNalpha), HSCs efficiently exit G(0) and enter an active cell cycle. HSCs respond to IFNalpha treatment by the increased phosphorylation of STAT1 and PKB/Akt (also known as AKT1), the expression of IFNalpha target genes, and the upregulation of stem cell antigen-1 (Sca-1, also known as LY6A). HSCs lacking the IFNalpha/beta receptor (IFNAR), STAT1 (ref. 3) or Sca-1 (ref. 4) are insensitive to IFNalpha stimulation, demonstrating that STAT1 and Sca-1 mediate IFNalpha-induced HSC proliferation. Although dormant HSCs are resistant to the anti-proliferative chemotherapeutic agent 5-fluoro-uracil, HSCs pre-treated (primed) with IFNalpha and thus induced to proliferate are efficiently eliminated by 5-fluoro-uracil exposure in vivo. Conversely, HSCs chronically activated by IFNalpha are functionally compromised and are rapidly out-competed by non-activatable Ifnar(-/-) cells in competitive repopulation assays. Whereas chronic activation of the IFNalpha pathway in HSCs impairs their function, acute IFNalpha treatment promotes the proliferation of dormant HSCs in vivo. These data may help to clarify the so far unexplained clinical effects of IFNalpha on leukaemic cells, and raise the possibility for new applications of type I interferons to target cancer stem cells.
Resumo:
Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.
Resumo:
Diabetes and the related metabolic syndrome are multi system disorders that result from improper interactions between various cell types. Even though the underlying mechanism remains to be fully understood, it is most likely that both the long and the short distance range cell interactions, which normally ensure the physiologic functioning of the pancreas, and its relationships with the insulin-targeted organs, are altered. This review focuses on the short-range type of interactions that depend on the contact between adjacent cells and, specifically, on the interactions that are dependent on connexins. The widespread distribution of these membrane proteins, their multiple modes of action, and their interactions with conditions/molecules associated to both the pathogenesis and the treatment of the 2 main forms of diabetes and the metabolic syndrome, make connexins an essential part of the chain of events that leads to metabolic diseases. Here, we review the present state of knowledge about the molecular and cell biology of the connexin genes and proteins, their general mechanisms of action, the roles specific connexin species play in the endocrine pancreas and the major insulin-targeted organs, under physiological and patho-physiological conditions.
Resumo:
Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.
Resumo:
Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. Mammals have four Notch receptors that bind five different ligands. The function of Notch signaling during lymphopoiesis and T cell neoplasia, based on gain-of-function and conditional loss-of-function approaches for the Notch1 receptor, indicates Notch1 is essential in T cell lineage commitment. Recent studies have addressed the involvement of other Notch receptors and ligands as well as their downstream targets, demonstrating additional functions of Notch signaling in embryonic hematopoiesis, intrathymic T cell development, B cell development and peripheral T cell function.
Resumo:
BAFF, a member of the TNF family, is a fundamental survival factor for transitional and mature B cells. BAFF overexpression leads to an expanded B cell compartment and autoimmunity in mice, and elevated amounts of BAFF can be found in the serum of autoimmune patients. APRIL is a related factor that shares receptors with BAFF yet appears to play a different biological role. The BAFF system provides not only potential insight into the development of autoreactive B cells but a relatively simple paradigm to begin considering the balancing act between survival, growth, and death that affects all cells.
Resumo:
Phosphoinositides, synthesized from myo-inositol, play a critical role in the development of growth cones and in synaptic activity. As neurons cannot synthesize inositol, they take it up from the extracellular milieu. Here, we demonstrate that, in brain and PC12 cells, the recently identified H(+)/myo-inositol symporter HMIT is present in intracellular vesicles that are distinct from synaptic and dense-core vesicles. We further show that HMIT can be triggered to appear on the cell surface following cell depolarization, activation of protein kinase C or increased intracellular calcium concentrations. HMIT cell surface expression takes place preferentially in regions of nerve growth and at varicosities and leads to increased myo-inositol uptake. The symporter is then endocytosed in a dynamin-dependent manner and becomes available for a subsequent cycle of stimulated exocytosis. HMIT is thus expressed in a vesicular compartment involved in activity-dependent regulation of myo-inositol uptake in neurons. This may be essential for sustained signaling and vesicular traffic activities in growth cones and at synapses.
Resumo:
BACKGROUND & AIMS: Pazopanib has demonstrated clinical benefit in patients with advanced renal cell carcinoma (RCC) and is generally well tolerated. However, transaminase elevations have commonly been observed. This 2-stage study sought to identify genetic determinants of alanine transaminase (ALT) elevations in pazopanib-treated white patients with RCC.¦METHODS: Data from two separate clinical studies were used to examine the association of genetic polymorphisms with maximum on-treatment ALT levels.¦RESULTS: Of 6852 polymorphisms in 282 candidate genes examined in an exploratory dataset of 115 patients, 92 polymorphisms in 40 genes were significantly associated with ALT elevation (p<0.01). Two markers (rs2858996 and rs707889) in the HFE gene, which are not yet known to be associated with hemochromatosis, showed evidence for replication. Because of multiple comparisons, there was a 12% likelihood the replication occurred by chance. These two markers demonstrated strong linkage disequilibrium (r(2)=0.99). In the combined dataset, median (25-75th percentile) maximum ALT values were 1.2 (0.7-1.9), 1.1 (0.8-2.5), and 5.4 (1.9-7.6)×ULN for rs2858996 GG (n=148), GT (n=82), and TT (n=1 2) genotypes, respectively. All 12 TT patients had a maximum ALT>ULN, and 8 (67%) had ALT≥3×ULN. The odds ratio (95% CI) for ALT≥3×ULN for TT genotype was 39.7 (2.2-703.7) compared with other genotypes. As a predictor of ALT≥3×ULN, the TT genotype had a negative predictive value of 0.83 and positive predictive value of 0.67. No TT patients developed liver failure.¦CONCLUSIONS: The rs2858996/rs707889 polymorphisms in the HFE gene may be associated with reversible ALT elevation in pazo-panib-treated patients with RCC.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.
Resumo:
Inhibitory MHC receptors determine the reactivity and specificity of NK cells. These receptors can also regulate T cells by modulating TCR-induced effector functions such as cytotoxicity, cytokine production, and proliferation. Here we have assessed the capacity of mouse T cells expressing the inhibitory MHC class I receptor Ly49A to respond to a well-defined tumor Ag in vivo using Ly49A transgenic mice. We find that the presence of Ly49A on the vast majority of lymphocytes prevents the development of a significant Ag-specific CD8+ T cell response and, consequently, the rejection of the tumor. Despite minor alterations in the TCR repertoire of CD8+ T cells in the transgenic lines, precursors of functional tumor-specific CD8+ T cells exist but could not be activated most likely due to a lack of appropriate CD4+ T cell help. Surprisingly, all of these effects are observed in the absence of a known ligand for the Ly49A receptor as defined by its ability to regulate NK cell function. Indeed, we found that the above effects on T cells may be based on a weak interaction of Ly49A with Kb or Db class I molecules. Thus, our data demonstrate that enforced expression of a Ly49A receptor on conventional T cells prevents a specific immune response in vivo and suggest that the functions of T and NK cells are differentially sensitive to the presence of inhibitory MHC class I receptors.
Resumo:
Inositol and its phosphorylated derivatives play a major role in brain function, either as osmolytes, second messengers or regulators of vesicle endo- and exocytosis. Here we describe the identification and functional characterization of a novel H(+)-myo- inositol co-transporter, HMIT, expressed predominantly in the brain. HMIT cDNA encodes a 618 amino acid polypeptide with 12 predicted transmembrane domains. Functional expression of HMIT in Xenopus oocytes showed that transport activity was specific for myo-inositol and related stereoisomers with a Michaelis-Menten constant of approximately 100 microM, and that transport activity was strongly stimulated by decreasing pH. Electrophysiological measurements revealed that transport was electrogenic with a maximal transport activity reached at pH 5.0. In rat brain membrane preparations, HMIT appeared as a 75-90 kDa protein that could be converted to a 67 kDa band upon enzymatic deglycosylation. Immunofluorescence microscopy analysis showed HMIT expression in glial cells and some neurons. These data provide the first characterization of a mammalian H(+)-coupled myo- inositol transporter. Predominant central expression of HMIT suggests that it has a key role in the control of myo-inositol brain metabolism.
Resumo:
CD44 is the major cell-surface receptor for hyaluronan, which is implicated in cell-cell and cell-matrix adhesion, cell migration, and signaling. Studies have shown that CD44-dependent migration requires CD44 to be shed from the cell surface and that matrix metalloproteinase-mediated cleavage may provide an underlying mechanism. However, the full spectrum of proteases that may participate in CD44 shedding has yet to be defined. In this issue, Anderegg et al. demonstrate that ADAM10, but not ADAM17 or MMP14, mediates constitutive shedding of CD44 in human melanoma cells and that knockdown of ADAM10 blocks the antiproliferative activity of the soluble proteolytic cleavage product of CD44.
Resumo:
Fifteen human melanoma cells lines were tested by an antibody-binding radioimmunoassay using a monoclonal antibody (A12) directed against the common acute lymphoblastic leukemia antigen (CALLA). Cells from six melanoma lines were found to react with this antibody. The level of antigen and the percentage of positive cells in these six melanoma lines showed wide variation, as demonstrated by analysis in the fluorescence-activated cell sorter (FACS). Immunoprecipitation of solubilized 125I-labeled membrane proteins from CALLA positive melanoma cells with A12 monoclonal antibody revealed a major polypeptide chain with an apparent m.w. of 100,000 daltons, characteristic for CALLA as determined on SDS-polyacrylamide gel electrophoresis. The expression of CALLA on MP-6 melanoma cells was modulated when the cells were cultured in the presence of A12 antibody. Reexpression of CALLA on these cells occurred within 5 days after transfer of the modulated cells into medium devoid of monoclonal antibody.