670 resultados para Osteoarthritis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical activity can significantly reduce the risk of cardiovascular disease, diabetes, some forms of cancer, osteoporosis, obesity, falls and fractures, and some mental health problems. While the benefits of physical activity are clear, there is a slightly increased risk of sudden death while exercising (compared with while sedentary), especially in untrained people undertaking unaccustomed vigorous activity. Routine exercise testing yields a significant number of false-positive results, and has not been shown to prevent exercise-related acute cardiac events. There is no convincing evidence that exercise is itself associated with osteoarthritis, but significant joint injury which occurs during sport is associated with an increased risk of subsequent development of osteoarthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To explore the relationship between measures of self-efficacy, health locus of control, health status and direct medical expenditure among community-dwelling subjects with rheumatoid arthritis (RA) and osteoarthritis (OA). Methods. This analysis is part of a larger ongoing study of the costs and outcomes of arthritis and its treatments. Community-dwelling RA and OA respondents completed questionnaires concerning arthritis-related expenditure, health status, arthritis related self-efficacy and health locus of control. Results. Data were obtained from 70 RA respondents and 223 OA respondents. The majority of respondents were female with a mean age of 63 yr for RA respondents and 68 yr for OA respondents. Among the RA respondents, those with higher self-efficacy reported better health status and lower overall costs. Health locus of control was not consistently correlated with health status. OA respondents with higher self-efficacy reported better health status and lower costs. Health locus of control had more influence. OA respondents with higher external locus of control reported worse pain and function. A higher belief in chance as a determinant of health was correlated with more visits to general practitioners and a higher cost to both the respondent and the health system. Conclusion. Higher self-efficacy, which is amenable to change through education programmes, was associated with better health status and lower costs to the respondent and the health system in this cross-sectional study. Locus of control had less of an influence; however, the tendency was for those with higher external locus of control to have higher costs and worse health status. As the measurement of these constructs is simple and the outcome potentially affects health status, these results have implications for future intervention studies to improve quality of life and reduce the financial impact of arthritis on both the health-care system and patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Musculoskeletal diseases are one of the major causes of disability around the world and have been a significant reason for the development of the Bone and Joint Decade. Rheumatoid arthritis, osteoarthritis and back pain are important causes of disability-adjusted-life years in both the developed and developing world. COPCORD studies in over 17 countries around the world have identified back and knee pain as common in the community and are likely to increase with the ageing population. Musculoskeletal conditions are an enormous cost to the community in economic terms, and these figures emphasise how governments need to invest in the future and look at ways of reducing the burden of musculoskeletal diseases by encouraging exercise and obesity prevention campaigns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformable models are a highly accurate and flexible approach to segmenting structures in medical images. The primary drawback of deformable models is that they are sensitive to initialisation, with accurate and robust results often requiring initialisation close to the true object in the image. Automatically obtaining a good initialisation is problematic for many structures in the body. The cartilages of the knee are a thin elastic material that cover the ends of the bone, absorbing shock and allowing smooth movement. The degeneration of these cartilages characterize the progression of osteoarthritis. The state of the art in the segmentation of the cartilage are 2D semi-automated algorithms. These algorithms require significant time and supervison by a clinical expert, so the development of an automatic segmentation algorithm for the cartilages is an important clinical goal. In this paper we present an approach towards this goal that allows us to automatically providing a good initialisation for deformable models of the patella cartilage, by utilising the strong spatial relationship of the cartilage to the underlying bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage undergoes severe loss of proteoglycan and its constituent glycosaminoglycans (GAGs) in osteoarthritis. We hypothesize that the low GAG content of osteoarthritic cartilage renders the tissue susceptible to pathological vascularization. This was investigated using an in vitro angiogenesis model assessing endothelial cell adhesion to GAG-depleted cartilage explants. Bovine cartilage explants were treated with hyaluronidase to deplete GAG content and then seeded with fluorescently tagged human endothelial cells (HMEC-1). HMEC-1 adherence was assessed after 4 hr and 7 days. The effect of hyaluronidase treatment on GAG content, chondrocyte viability, and biochemical composition of the extracellular matrix was also determined. Hyaluronidase treatment reduced the GAG content of cartilage explants by 78 ± 3% compared with that of controls (p <0.0001). GAG depletion was associated with significantly more HMEC-1 adherence on both the surface (superficial zone) and the underside (deep zone) of the explants (both p <0.0001). The latter provided a more favorable environment for extended culture of HMEC-1 compared with the articulating surface. Hyaluronidase treatment altered the immunostaining for chondroitin sulfate epitopes, but not for lubricin. Our results support the hypothesis that articular cartilage GAGs are antiadhesive to endothelial cells and suggest that chondroitin sulfate and/or hyaluronan are responsible. The loss of these GAGs in osteoarthritis may allow osteochondral angiogenesis resulting in disease progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA methylation is a major control program that modulates gene expression in a plethora of organisms. Gene silencing through methylation occurs through the activity of DNA methyltransferases, enzymes that transfer a methyl group from S-adenosyl-l-methionine to the carbon 5 position of cytosine. DNA methylation patterns are established by the de novo DNA methyltransferases (DNMTs) DNMT3A and DNMT3B and are subsequently maintained by DNMT1. Aging and age-related diseases include defined changes in 5-methylcytosine content and are generally characterized by genome-wide hypomethylation and promoter-specific hypermethylation. These changes in the epigenetic landscape represent potential disease biomarkers and are thought to contribute to age-related pathologies, such as cancer, osteoarthritis, and neurodegeneration. Some diseases, such as a hereditary form of sensory neuropathy accompanied by dementia, are directly caused by methylomic changes. Epigenetic modifications, however, are reversible and are therefore a prime target for therapeutic intervention. Numerous drugs that specifically target DNMTs are being tested in ongoing clinical trials for a variety of cancers, and data from finished trials demonstrate that some, such as 5-azacytidine, may even be superior to standard care. DNMTs, demethylases, and associated partners are dynamically shaping the methylome and demonstrate great promise with regard to rejuvenation. © Copyright 2012, Mary Ann Liebert, Inc. 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Damage to articular cartilage of the knee can be debilitating because it lacks the capacity to repair itself and can progress to degenerative disorders such as osteoarthritis. The current gold standard for treating cartilage defects is autologous chondrocyte implantation (ACI). However, one of the major limitations of ACI is the use of chondrocytes, which dedifferentiate when grown in vitro and lose their phenotype. It is not clear whether the dedifferentiated chondrocytes can fully redifferentiate upon in vivo transplantation. Studies have suggested that undifferentiated mesenchymal stem or stromal cells (MSCs) from bone marrow (BM) and adipose tissue (AT) can undergo chondrogenic differentiation. Therefore, the main aim of this thesis was to examine BM and AT as a cell source for chondrogenesis using clinical scaffolds. Initially, freshly isolated cells were compared with culture expanded MSCs from BM and AT in Chondro-Gide®, Alpha Chondro Shield® and Hyalofastâ¢. MSCs were shown to grow better in the three scaffolds compared to freshly isolated cells. BM MSCs in Chondro-Gide® were shown to have increased deposition of cartilage specific extracellular matrix (ECM) compared to AT MSCs. Further, this thesis has sought to examine whether CD271 selected MSCs from AT were more chondrogenic than MSCs selected on the basis of plastic adherence (PA). It was shown that CD271+MSCs may have superior chondrogenic properties in vitro and in vivo in terms of ECM deposition. The repair tissue seen after CD271+MSC transplantation combined with Alpha Chondro Shield® was also less vascularised than that seen after transplantation with PA MSCs in the same scaffold, suggesting antiangiogenic activity. Since articular cartilage is an avascular tissue, CD271+MSCs may be a better suited cell type compared to the PA MSCs. Hence, this study has increased the current understanding of how different cell-scaffold combinations may best be used to promote articular cartilage repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage injuries occur frequently in the knee joint. Several methods have been implemented clinically, to treat osteochondral defects but none have been able to produce a long term, durable solution. Photopolymerizable cartilage tissue engineering approaches appear promising; however, fundamentally, forming a stable interface between the tissue engineered cartilage and native tissue, mainly subchondral bone and native cartilage, remains a major challenge. The overall objective of this research is to find a solution for the current problem of dislodgment of tissue engineered cartilage at the defect site for the treatment of degraded cartilage that has been caused due to knee injuries or because of mild to moderate level of osteoarthritis. For this, an in-vitro model was created to analyze the integration of tissue engineered cartilage with the bone, healthy and diseased cartilage over time. We investigated the utility of hydroxyapatite (HA) nanoparticles to promote controlled bone-growth across the bone-cartilage interface in an in vitro engineered tissue model system using bone marrow derived stem cells. We also investigated the application of HA nanoparticles to promote enhance integration between tissue engineered cartilage and native cartilage both in healthy and diseased states. Samples incorporated with HA demonstrated significantly higher interfacial shear strength (at the junction between engineered cartilage and engineered bone and also with diseased cartilage) compared to the constructs without HA (p < 0.05), after 28 days of culture. These findings indicate that the incorporation of HA nanoparticles permits more stable anchorage of the injectable hydrogel-based engineered cartilage construct via augmented integration between bone and cartilage.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total knee arthroplasty (TKA) has revolutionized the life of millions of patients and it is the most efficient treatment in cases of osteoarthritis. The increase in life expectancy has lowered the average age of the patient, which requires a more enduring and performing prosthesis. To improve the design of implants and satisfying the patient's needs, a deep understanding of the knee Biomechanics is needed. To overcome the uncertainties of numerical models, recently instrumented knee prostheses are spreading. The aim of the thesis was to design and manifacture a new prototype of instrumented implant, able to measure kinetics and kinematics (in terms of medial and lateral forces and patellofemoral forces) of different interchangeable designs of prosthesis during experiments tests within a research laboratory, on robotic knee simulator. Unlike previous prototypes it was not aimed for industrial applications, but purely focusing on research. After a careful study of the literature, and a preliminary analytic study, the device was created modifying the structure of a commercial prosthesis and transforming it in a load cell. For monitoring the kinematics of the femoral component a three-layers, piezoelettric position sensor was manifactured using a Velostat foil. This sensor has responded well to pilot test. Once completed, such device can be used to validate existing numerical models of the knee and of TKA and create new ones, more accurate.It can lead to refinement of surgical techniques, to enhancement of prosthetic designs and, once validated, and if properly modified, it can be used also intraoperatively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca(2+) signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca(2+) transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work outlines the theoretical advantages of multivariate methods in biomechanical data, validates the proposed methods and outlines new clinical findings relating to knee osteoarthritis that were made possible by this approach. New techniques were based on existing multivariate approaches, Partial Least Squares (PLS) and Non-negative Matrix Factorization (NMF) and validated using existing data sets. The new techniques developed, PCA-PLS-LDA (Principal Component Analysis â Partial Least Squares â Linear Discriminant Analysis), PCA-PLS-MLR (Principal Component Analysis â Partial Least Squares âMultiple Linear Regression) and Waveform Similarity (based on NMF) were developed to address the challenging characteristics of biomechanical data, variability and correlation. As a result, these new structure-seeking technique revealed new clinical findings. The first new clinical finding relates to the relationship between pain, radiographic severity and mechanics. Simultaneous analysis of pain and radiographic severity outcomes, a first in biomechanics, revealed that the knee adduction momentâs relationship to radiographic features is mediated by pain in subjects with moderate osteoarthritis. The second clinical finding was quantifying the importance of neuromuscular patterns in brace effectiveness for patients with knee osteoarthritis. I found that brace effectiveness was more related to the patientâs unbraced neuromuscular patterns than it was to mechanics, and that these neuromuscular patterns were more complicated than simply increased overall muscle activity, as previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SYSTEMATIC REVIEW AND META-ANALYSIS: EFFECTS OF WALKING EXERCISE IN CHRONIC MUSCULOSKELETAL PAIN O'Connor S.R.1, Tully M.A.2, Ryan B.3, Baxter D.G.3, Bradley J.M.1, McDonough S.M.11University of Ulster, Health &amp; Rehabilitation Sciences Research Institute, Newtownabbey, United Kingdom, 2Queen's University, UKCRC Centre of Excellence for Public Health (NI), Belfast, United Kingdom, 3University of Otago, Centre for Physiotherapy Research, Dunedin, New ZealandPurpose: To examine the effects of walking exercise on pain and self-reported function in adults with chronic musculoskeletal pain.Relevance: Chronic musculoskeletal pain is a major cause of morbidity, exerting a substantial influence on long-term health status and overall quality of life. Current treatment recommendations advocate various aerobic exercise interventions for such conditions. Walking may represent an ideal form of exercise due to its relatively low impact. However, there is currently limited evidence for its effectiveness.Participants: Not applicable.Methods: A comprehensive search strategy was undertaken by two independent reviewers according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the recommendations of the Cochrane Musculoskeletal Review Group. Six electronic databases (Medline, CINAHL, PsychINFO, PEDro, Sport DISCUS and the Cochrane Central Register of Controlled Trials) were searched for relevant papers published up to January 2010 using MeSH terms. All randomised or non-randomised studies published in full were considered for inclusion. Studies were required to include adults aged 18 years or over with a diagnosis of chronic low back pain, osteoarthritis or fibromyalgia. Studies were excluded if they involved peri-operative or post-operative interventions or did not include a comparative, non exercise or non-walking exercise control group. The U.S. Preventative Services Task Force system was used to assess methodological quality. Data for pain and self-reported function were extracted and converted to a score out of 100.Analysis: Data were pooled and analyzed using RevMan (v.5.0.24). Statistical heterogeneity was assessed using the X2 and I2 test statistics. A random effects model was used to calculate the mean differences and 95% CIs. Data were analyzed by length of final follow-up which was categorized as short (â¤8 weeks post randomisation), mid (2-12 months) or long-term (&gt;12 months).Results: A total of 4324 articles were identified and twenty studies (1852 participants) meeting the inclusion criteria were included in the review. Overall, studies were judged to be of at least fair methodological quality. The most common sources of likely bias were identified as lack of concealed allocation and failure to adequately address incomplete data. Data from 12 studies were suitable for meta-analysis. Walking led to reductions in pain at short (&lt;8 weeks post randomisation) (-8.44 [-14.54, -2.33]) and mid-term (&gt;8 weeks - 12 month) follow-up (-9.28 [-16.34, -2.22]). No effect was observed for long-term (&gt;12 month) data (-2.49 [-7.62, 2.65]). For function, between group differences were observed for short (-11.57 [-16.06, -7.08]) and mid-term data (-13.26 [-16.91, -9.62]). A smaller effect was also observed at long-term follow-up (-5.60 [-7.70, -3.50]).Conclusions: Walking interventions were associated with statistically significant improvements in pain and function at short and mid-term follow-up. Long-term data were limited but indicated that these effects do not appear to be maintained beyond twelve months.Implications: Walking may be an effective form of exercise for individuals with chronic musculoskeletal pain. However, further research is required which examines longer term follow-up and dose-response issues in this population.Key-words: 1. Walking exercise 2. Musculoskeletal pain 3. Systematic reviewFunding acknowledgements: Department of Employment and Learning, Northern Ireland.Ethics approval: Not applicable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hallux rígidus (HR) affects the first metatarsophalangeal joint (MTPJ) between 35% and 60% of the population over 65 years and there are multiple ways of treatment. Depending on the radiological stage where you find the deformity determines the procedure to be performed; in the early stages cheilectomy techniques and corrective osteotomy is performed while the more advanced ratings, the surgeon chooses destructive techniques considered as arthrodesis and arthroplasty. This final of degree project aims to focus on 1 MTPJ destructive techniques to clarify which of the procedures generates better results by a number of parameters; outcomes of the American Orthopaedic Foot scale and Ankle Society Hallux metatarsophalangeal Interphalangeal-scale (AOFAS), range of motion (ROM) of the 1ºAMTF, radiological classification. As for the implant arthroplasty technique, this article offers information on material and design that generates better relating to patient characteristics such as age, inflammatory joint diseases, viability and durability of the implant results. The conclusion from this review is that the values obtained in the arthrodesis according AOFAS decrease due to loss of mobility, but both techniques have similar values of effectiveness and concludes with the decision that the technique used is determined taking into account various factors and patient characteristics. Keywords: Hallux rígidus; (Hallux Rígidus) and surgery treatment; Hallux Rígidus arthrodesis; Hallux Rígidus arthroplasty; Hallux Rígidus (arthroplasty and arthrodesis).