847 resultados para Orthogonal Representation
Resumo:
Research has mainly focussed on the perceptual nature of synaesthesia. However, synaesthetic experiences are also semantically represented. It was our aim to develop a task to investigate the semantic representation of the concurrent and its relation to the inducer in grapheme-colour synaesthesia. Non-synaesthetes were either tested with a lexical-decision (i.e., word / non-word) or a semantic-classification (i.e., edibility decision) task. Targets consisted of words which were strongly associated with a specific colour (e.g., banana - yellow) and words which were neutral and not associated with a specific colour (e.g., aunt). Target words were primed with colours: the prime target relationship was either intramodal (i.e., word - word) or crossmodal (colour patch - word). Each of the four task versions consisted of three conditions: congruent (same colour for prime and target), incongruent (different colour), and unrelated (neutral target). For both tasks (i.e., lexical and semantic) and both versions of the task (i.e., intramodal and crossmodal), we expected faster reaction times (RTs) in the congruent condition than in the neutral condition and slower RTs in the incongruent condition than the neutral condition. Stronger effects were expected in the intramodal condition due to the overlap in the prime target modality. The results suggest that the hypotheses were partly confirmed. We conclude that the tasks and hypotheses can be readily adopted to investigate the nature of the representation of the synaesthetic experiences.
Resumo:
Problem: Medical and veterinary students memorize facts but then have difficulty applying those facts in clinical problem solving. Cognitive engineering research suggests that the inability of medical and veterinary students to infer concepts from facts may be due in part to specific features of how information is represented and organized in educational materials. First, physical separation of pieces of information may increase the cognitive load on the student. Second, information that is necessary but not explicitly stated may also contribute to the student’s cognitive load. Finally, the types of representations – textual or graphical – may also support or hinder the student’s learning process. This may explain why students have difficulty applying biomedical facts in clinical problem solving. Purpose: To test the hypothesis that three specific aspects of expository text – the patial distance between the facts needed to infer a rule, the explicitness of information, and the format of representation – affected the ability of students to solve clinical problems. Setting: The study was conducted in the parasitology laboratory of a college of veterinary medicine in Texas. Sample: The study subjects were a convenience sample consisting of 132 second-year veterinary students who matriculated in 2007. The age of this class upon admission ranged from 20-52, and the gender makeup of this class consisted of approximately 75% females and 25% males. Results: No statistically significant difference in student ability to solve clinical problems was found when relevant facts were placed in proximity, nor when an explicit rule was stated. Further, no statistically significant difference in student ability to solve clinical problems was found when students were given different representations of material, including tables and concept maps. Findings: The findings from this study indicate that the three properties investigated – proximity, explicitness, and representation – had no statistically significant effect on student learning as it relates to clinical problem-solving ability. However, ad hoc observations as well as findings from other researchers suggest that the subjects were probably using rote learning techniques such as memorization, and therefore were not attempting to infer relationships from the factual material in the interventions, unless they were specifically prompted to look for patterns. A serendipitous finding unrelated to the study hypothesis was that those subjects who correctly answered questions regarding functional (non-morphologic) properties, such as mode of transmission and intermediate host, at the family taxonomic level were significantly more likely to correctly answer clinical case scenarios than were subjects who did not correctly answer questions regarding functional properties. These findings suggest a strong relationship (p < .001) between well-organized knowledge of taxonomic functional properties and clinical problem solving ability. Recommendations: Further study should be undertaken investigating the relationship between knowledge of functional taxonomic properties and clinical problem solving ability. In addition, the effect of prompting students to look for patterns in instructional material, followed by the effect of factors that affect cognitive load such as proximity, explicitness, and representation, should be explored.
Resumo:
My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.
Resumo:
The results of shore-based three-axis resistivity and X-ray computed tomography (CT) measurements on cube-shaped samples recovered during Leg 185 are presented along with moisture and density, P-wave velocity, resistivity, and X-ray CT measurements on whole-round samples of representative lithologies from Site 1149. These measurements augment the standard suite of physical properties obtained during Leg 185 from the cube samples and samples obtained adjacent to the cut cubes. Both shipboard and shore-based measurements of physical properties provide information that assists in characterizing lithologic units, correlating cored material with downhole logging data, understanding the nature of consolidation, and interpreting seismic reflection profiles.
(Figure F2) Orthogonal vector plots of AF demagnetization steps of IODP Hole 308-U1319A (16.26 mbsf)
Resumo:
Researchers have long believed the concept of "excitement" in games to be subjective and difficult to measure. This paper presents the development of a mathematically computable index that measures this concept from the viewpoint of an audience. One of the key aspects of the index is the differential of the probability of "winning" before and after one specific "play" in a given game. If the probability of winning becomes very positive or negative by that play, then the audience will feel the game to be "exciting." The index makes a large contribution to the study of games and enables researchers to compare and analyze the "excitement" of various games. It may be applied to many fields especially the area of welfare economics, ranging from allocative efficiency to axioms of justice and equity.
A Mathematical Representation of "Excitement" in Games: A Contribution to the Theory of Game Systems
Resumo:
Researchers have long believed the concept of "excitement" in games to be subjective and difficult to measure. This paper presents the development of a mathematically computable index that measures the concept from the viewpoint of an audience and from that of a player. One of the key aspects of the index is the differential of the probability of "winning" before and after one specific "play" in a given game. The index makes a large contribution to the study of games and enables researchers to compare and analyze the “excitement” of various games. It may be applied in many fields, especially the area of welfare economics, and applications may range from those related to allocative efficiency to axioms of justice and equity.
Resumo:
The acquisition of technical, contextual and behavioral competences is a prerequisite for sustainable development and strengthening of rural communities. Territorial display of the status of these skills helps to design the necessary learning, so its inclusion in planning processes is useful for decision making. The article discusses the application of visual representation of competences in a rural development project with Aymara women communities in Peru. The results show an improvement of transparency and dialogue, resulting in a more successful project management and strengthening of social organization.
Resumo:
In this paper a layered architecture to spot and characterize vowel segments in running speech is presented. The detection process is based on neuromorphic principles, as is the use of Hebbian units in layers to implement lateral inhibition, band probability estimation and mutual exclusion. Results are presented showing how the association between the acoustic set of patterns and the phonologic set of symbols may be created. Possible applications of this methodology are to be found in speech event spotting, in the study of pathological voice and in speaker biometric characterization, among others.