975 resultados para Ore deposits.
Resumo:
Ferromanganese crusts, nodules, and ferromanganese-rich sediments were recovered on the Wombat Plateau, northwest Australian continental margin, by dredging during Bureau of Mineral Resources cruise 56 of Rig Seismic and by drilling during ODP Leg 122 of JOWES Resolution. We report here the chemistry and mineralogy of the ferromanganese crusts, nodules, and associated ferromanganese-rich sediments. The ferromanganese deposits from the ODP sites are up to 40 cm thick and probably formed in Late Cretaceous to Eocene times. Those from outcrops usually formed in several phases, and their age is unconstrained except that the substrates are Mesozoic. The samples were recovered from present-day water depths of 2000-4600 m, on the Wombat Plateau adjacent to the Argo Abyssal Plain. Both the nodules and crusts are primarily vernadite (delta-MnO2) and are chemically and mineralogically similar, and not dissimilar from ferromanganese deposits found elsewhere on Australian and other marginal plateaus. They are markedly different from most deep-sea deposits. The only crystalline iron phase identified within the ferromanganese deposits is goethite. Concentrations of metals of potential economic interest are generally low compared to those from vernadite-rich seamount crusts and nodules and from abyssal nodules from areas of high resource potential in the Pacific Ocean. Maximum metal values reach 0.55% Co, 0.58% Ni, and 0.20% Cu in deposits containing 4.8% to 30.9% Fe and 4.4% to 21.1% Mn.
Resumo:
Deposits corresponding to multiple periods of glaciation are preserved in ice-free areas adjacent to Reedy Glacier, southern Transantarctic Mountains. Glacial geologic mapping, supported by 10Be surface-exposure dating, shows that Reedy Glacier was significantly thicker than today multiple times during the mid-to-late Cenozoic. Longitudinal-surface profiles reconstructed from the upper limits of deposits indicate greater thickening at the glacier mouth than at the head during these episodes, indicating that Reedy Glacier responded primarily to changes in the thickness of the West Antarctic Ice Sheet. Surface-exposure ages suggest this relationship has been in place since at least 5 Ma. The last period of thickening of Reedy Glacier occurred during Marine Isotope Stage 2, at which time the glacier surface near its confluence with the West Antarctic Ice Sheet was at least 500 m higher than today.
Resumo:
Current understanding of rare earth element (REE) geochemistry in the ocean is given in the book. Chemical properties determining REE migration ability in natural processes, sources of REE in the ocean, behavior of REE in river-sea mixing zones, fractionation of dissolved and particulate REE in ocean waters under aerobic and anaerobic conditions, distribution of REE in terrigenous, authigenic, hydrothermal and biogenic sediment components (clay, bone detritus, barite, phillipsite, Fe- and Mn-oxyhydroxides, Fe-Ca hydroxophosphate, diatoms and foraminiferas) are under consideration.