886 resultados para Optimization. Markov Chain. Genetic Algorithm. Fuzzy Controller


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a variable neighborhood search (VNS) approach for the task assignment problem (TAP) is considered. An appropriate neighborhood scheme along with a shaking operator and local search procedure are constructed specifically for this problem. The computational results are presented for the instances from the literature, and compared to optimal solutions obtained by the CPLEX solver and heuristic solutions generated by the genetic algorithm. It can be seen that the proposed VNS approach reaches all optimal solutions in a quite short amount of computational time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key words: Markov-modulated queues, waiting time, heavy traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present our understanding about the article of Aksoy [1], which uses Markov chains to model the flow of intermittent rivers. Then, we executed an application of his model in order to generate data for intermittent streamflows, based on a data set of Brazilian streams. After that, we build a hidden Markov model as a proposed new approach to the problem of simulation of such flows. We used the Gamma distribution to simulate the increases and decreases in river flows, along with a two-state Markov chain. The motivation for us to use a hidden Markov model comes from the possibility of obtaining the same information that the Aksoy’s model provides, but using a single tool capable of treating the problem as a whole, and not through multiple independent processes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant advances have emerged in research related to the topic of Classifier Committees. The models that receive the most attention in the literature are those of the static nature, also known as ensembles. The algorithms that are part of this class, we highlight the methods that using techniques of resampling of the training data: Bagging, Boosting and Multiboosting. The choice of the architecture and base components to be recruited is not a trivial task and has motivated new proposals in an attempt to build such models automatically, and many of them are based on optimization methods. Many of these contributions have not shown satisfactory results when applied to more complex problems with different nature. In contrast, the thesis presented here, proposes three new hybrid approaches for automatic construction for ensembles: Increment of Diversity, Adaptive-fitness Function and Meta-learning for the development of systems for automatic configuration of parameters for models of ensemble. In the first one approach, we propose a solution that combines different diversity techniques in a single conceptual framework, in attempt to achieve higher levels of diversity in ensembles, and with it, the better the performance of such systems. In the second one approach, using a genetic algorithm for automatic design of ensembles. The contribution is to combine the techniques of filter and wrapper adaptively to evolve a better distribution of the feature space to be presented for the components of ensemble. Finally, the last one approach, which proposes new techniques for recommendation of architecture and based components on ensemble, by techniques of traditional meta-learning and multi-label meta-learning. In general, the results are encouraging and corroborate with the thesis that hybrid tools are a powerful solution in building effective ensembles for pattern classification problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Launching centers are designed for scientific and commercial activities with aerospace vehicles. Rockets Tracking Systems (RTS) are part of the infrastructure of these centers and they are responsible for collecting and processing the data trajectory of vehicles. Generally, Parabolic Reflector Radars (PRRs) are used in RTS. However, it is possible to use radars with antenna arrays, or Phased Arrays (PAs), so called Phased Arrays Radars (PARs). Thus, the excitation signal of each radiating element of the array can be adjusted to perform electronic control of the radiation pattern in order to improve functionality and maintenance of the system. Therefore, in the implementation and reuse projects of PARs, modeling is subject to various combinations of excitation signals, producing a complex optimization problem due to the large number of available solutions. In this case, it is possible to use offline optimization methods, such as Genetic Algorithms (GAs), to calculate the problem solutions, which are stored for online applications. Hence, the Genetic Algorithm with Maximum-Minimum Crossover (GAMMC) optimization method was used to develop the GAMMC-P algorithm that optimizes the modeling step of radiation pattern control from planar PAs. Compared with a conventional crossover GA, the GAMMC has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, the GAMMC prevents premature convergence, increases population fitness and reduces the processing time. Therefore, the GAMMC-P uses a reconfigurable algorithm with multiple objectives, different coding and genetic operator MMC. The test results show that GAMMC-P reached the proposed requirements for different operating conditions of a planar RAV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a hybrid technique of frequency selective surfaces project (FSS) on a isotropic dielectric layer, considering various geometries for the elements of the unit cell. Specifically, the hybrid technique uses the equivalent circuit method in conjunction with genetic algorithm, aiming at the synthesis of structures with response single-band and dual-band. The equivalent circuit method allows you to model the structure by using an equivalent circuit and also obtaining circuits for different geometries. From the obtaining of the parameters of these circuits, you can get the transmission and reflection characteristics of patterned structures. For the optimization of patterned structures, according to the desired frequency response, Matlab™ optimization tool named optimtool proved to be easy to use, allowing you to explore important results on the optimization analysis. In this thesis, numeric and experimental results are presented for the different characteristics of the analyzed geometries. For this, it was determined a technique to obtain the parameter N, which is based on genetic algorithms and differential geometry, to obtain the algebraic rational models that determine values of N more accurate, facilitating new projects of FSS with these geometries. The optimal results of N are grouped according to the occupancy factor of the cell and the thickness of the dielectric, for modeling of the structures by means of rational algebraic equations. Furthermore, for the proposed hybrid model was developed a fitness function for the purpose of calculating the error occurred in the definitions of FSS bandwidths with transmission features single band and dual band. This thesis deals with the construction of prototypes of FSS with frequency settings and band widths obtained with the use of this function. The FSS were initially reviewed through simulations performed with the commercial software Ansoft Designer ™, followed by simulation with the equivalent circuit method for obtaining a value of N in order to converge the resonance frequency and the bandwidth of the FSS analyzed, then the results obtained were compared. The methodology applied is validated with the construction and measurement of prototypes with different geometries of the cells of the arrays of FSS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a hybrid technique of frequency selective surfaces project (FSS) on a isotropic dielectric layer, considering various geometries for the elements of the unit cell. Specifically, the hybrid technique uses the equivalent circuit method in conjunction with genetic algorithm, aiming at the synthesis of structures with response single-band and dual-band. The equivalent circuit method allows you to model the structure by using an equivalent circuit and also obtaining circuits for different geometries. From the obtaining of the parameters of these circuits, you can get the transmission and reflection characteristics of patterned structures. For the optimization of patterned structures, according to the desired frequency response, Matlab™ optimization tool named optimtool proved to be easy to use, allowing you to explore important results on the optimization analysis. In this thesis, numeric and experimental results are presented for the different characteristics of the analyzed geometries. For this, it was determined a technique to obtain the parameter N, which is based on genetic algorithms and differential geometry, to obtain the algebraic rational models that determine values of N more accurate, facilitating new projects of FSS with these geometries. The optimal results of N are grouped according to the occupancy factor of the cell and the thickness of the dielectric, for modeling of the structures by means of rational algebraic equations. Furthermore, for the proposed hybrid model was developed a fitness function for the purpose of calculating the error occurred in the definitions of FSS bandwidths with transmission features single band and dual band. This thesis deals with the construction of prototypes of FSS with frequency settings and band widths obtained with the use of this function. The FSS were initially reviewed through simulations performed with the commercial software Ansoft Designer ™, followed by simulation with the equivalent circuit method for obtaining a value of N in order to converge the resonance frequency and the bandwidth of the FSS analyzed, then the results obtained were compared. The methodology applied is validated with the construction and measurement of prototypes with different geometries of the cells of the arrays of FSS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to study the angular momentum of a sample of S0 galaxies. In the quest to understand whether the formation of S0 galaxies is more closely linked to that of ellipticals or that of spirals, our goal is to compare the amount of their specific angular momentum as a function of stellar mass with respect to spirals. Through kinematic comparison between these different classes of galaxies we aim to understand if a scenario of passive evolution, in which the galaxy’s gas is consumed and the star formation is quenched, can be considered as plausible mechanism to explain the transformation from spirals to S0s. In order to derive the structural and photometric parameters of galaxy sub-components we performed a bulge-disc decomposition of optical images using GALFIT. The stellar kinematic of the galaxies was measured using integral field spectroscopic data from CALIFA survey. The development of new original software, based on a Monte Carlo Markov Chain algorithm, allowed us to obtain the values of the line of sight velocity and velocity dispersion of disc and bulge components. The result that we obtained is that S0 discs have a distribution of stellar specific angular momentum that is in full agreement with that of spiral discs, so the mechanism of simple fading can be considered as one of the most important for transformation from spirals to S0s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable reluctance motors have been increasingly used as an alternative for variable speed and high speed drives in many industrial applications, due to many advantages like the simplicity of construction, robustness, and low cost. The most common applications in recent years are related to aeronautics, electric and hybrid vehicles and wind power generation. This paper explores the theory, operation, design procedures and analysis of a variable reluctance machine. An iterative design methodology is introduced and used to design a 1.25 kW prototype. For the analysis of the machine two methods are used, an analytical method and the finite element simulation. The results obtained by both methods are compared. The results of finite element simulation are used to determine the inductance profiles and torque of the prototype. The magnetic saturation is examined visually and numerically in four critical points of the machine. The data collected in the simulation allow the verification of design and operating limits for the prototype. Moreover, the behavior of the output quantities is analyzed (inductance, torque and magnetic saturation) by variation of physical dimensions of the motor. Finally, a multiobjective optimization using Differential Evolution algorithms and Genetic Algorithms for switched reluctance machine design is proposed. The optimized variables are rotor and stator polar arcs, and the goals are to maximize the average torque, the average torque per copper losses and the average torque per core volume. Finally, the initial design and optimized design are compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.

Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.

One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.

Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.

In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.

Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.

The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.

Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.

A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.

Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.

The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).

First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.

Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.

Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.

The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.

To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.

The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.

The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.

Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.

The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.

In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The VLT-FLAMES Tarantula Survey (VFTS) has secured mid-resolution spectra of over 300 O-type stars in the 30 Doradus region of the Large Magellanic Cloud. A homogeneous analysis of such a large sample requires automated techniques, an approach that will also be needed for the upcoming analysis of the Gaia surveys of the Northern and Southern Hemisphere supplementing the Gaia measurements. We point out the importance of Gaia for the study of O stars, summarize the O star science case of VFTS and present a test of the automated modeling technique using synthetically generated data. This method employs a genetic algorithm based optimization technique in combination with fastwind model atmospheres. The method is found to be robust and able to recover the main photospheric parameters accurately. Precise wind parameters can be obtained as well, however, as expected, for dwarf stars the rate of acceleration of the ow is poorly constrained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optimal day-ahead scheduling method (ODSM) for the integrated urban energy system (IUES) is introduced, which considers the reconfigurable capability of an electric distribution network. The hourly topology of a distribution network, a natural gas network, the energy centers including the combined heat and power (CHP) units, different energy conversion devices and demand responsive loads (DRLs), are optimized to minimize the day-ahead operation cost of the IUES. The hourly reconfigurable capability of the electric distribution network utilizing remotely controlled switches (RCSs) is explored and discussed. The operational constraints from the unbalanced three-phase electric distribution network, the natural gas network, and the energy centers are considered. The interactions between the electric distribution network and the natural gas network take place through conversion of energy among different energy vectors in the energy centers. An energy conversion analysis model for the energy center was developed based on the energy hub model. A hybrid optimization method based on genetic algorithm (GA) and a nonlinear interior point method (IPM) is utilized to solve the ODSM model. Numerical studies demonstrate that the proposed ODSM is able to provide the IUES with an effective and economical day-ahead scheduling scheme and reduce the operational cost of the IUES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of a heuristic solution to a NP-hard combinatorial problem is hard to assess. A few studies have advocated and tested statistical bounds as a method for assessment. These studies indicate that statistical bounds are superior to the more widely known and used deterministic bounds. However, the previous studies have been limited to a few metaheuristics and combinatorial problems and, hence, the general performance of statistical bounds in combinatorial optimization remains an open question. This work complements the existing literature on statistical bounds by testing them on the metaheuristic Greedy Randomized Adaptive Search Procedures (GRASP) and four combinatorial problems. Our findings confirm previous results that statistical bounds are reliable for the p-median problem, while we note that they also seem reliable for the set covering problem. For the quadratic assignment problem, the statistical bounds has previously been found reliable when obtained from the Genetic algorithm whereas in this work they found less reliable. Finally, we provide statistical bounds to four 2-path network design problem instances for which the optimum is currently unknown.