963 resultados para Optical waveguides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of chemical treatment on the surface morphology and other physical properties of tin monosulphide (SnS) thin films have been investigated. The SnS films treated with selected organic solvents exhibited strong improvement in their crystalline-quality and considerable decrease in electrical resistivity. Particularly, the films treated with chloroform showed very low electrical resistivity of similar to 5 Omega cm and a low optical band gap of 1.81 eV as compared to untreated and treated SnS films with other chemicals. From these studies we realized that the chemical treatment of SnS films has strong impact on their surface morphology and also on other physical properties. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When an electron is injected into liquid helium, it forces open a cavity that is free of helium atoms (an electron bubble). If the electron is in the ground 1S state, this bubble is spherical. By optical pumping it is possible to excite a significant fraction of the electron bubbles to the 1P state; the bubbles then lose spherical symmetry. We present calculations of the energies of photons that are needed to excite these 1P bubbles to higher energy states (1D and 2S) and the matrix elements for these transitions. Measurement of these transition energies would provide detailed information about the shape of the 1P bubbles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wheeler-Feynman (WF) absorber theory of radiation though no more of interest in explaining self interaction of an electron, can be very useful in today's research in small scale optical systems. The significance of the WF absorber is the use of time-symmetrical solution of Maxwell's equations as opposed to only the retarded solution. The radiative coupling of emitters to nano wires in the near field and change in their lifetimes due to small mode volume enclosures have been elucidated with the retarded solutions before. These solutions have also been shown to agree with quantum electrodynamics, thus allowing for classical electromagnetic approaches in such problems. It is here assumed that the radiative coupling of the emitter with a body is in proportion to its contribution to the classical force of radiative reaction as derived in the WF absorber theory. Representing such nano structures as a partial WF absorber acting on the emitter makes the computations considerably easier than conventional electromagnetic solutions for full boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 and Al2O3 are commonly used materials in optical thin films in the visible and near‐infrared wavelength region due to their high transparency and good stability. In this work, TiO2 and Al2O3 single, and nano composite thin films with different compositions were deposited on glass and silicon substrates at room temperature using a sol‐gel spin coater. The optical properties like reflectance, transmittance and refractive index have been studied using Spectrophotometer, and structural properties using X‐Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha-Fe2O3 nanoparticles were synthesized by a low temperature solution combustion method. The structural, magnetic and luminescence properties were studied. Powder X-ray diffraction (PXRD) pattern of alpha-Fe2O3 exhibits pure rhombohedral structure. SEM micrographs reveal the dumbbell shaped particles. The EPR spectrum shows an intense resonance signal at g approximate to 5.61 corresponding to isolated Fe3+ ions situated in axially distorted sites, whereas the g approximate to 2.30 is due to Fe3+ ions coupled by exchange interaction. Raman studies show A(1g) (225 cm(-1)) and E-g (293 and 409 cm(-1)) phonon modes. The absorption at 300 nm results from the ligand to metal charge transfer transitions whereas the 540 nm peak is mainly due to the (6)A(1) + (6)A(1) —> T-4(1)(4G) + T-4(1)(4G) excitation of an Fe3+-Fe3+ pair. A prominent TL glow peak was observed at 140 C at heating rate of 5 degrees C s(-1). The trapping parameters namely activation energy (E), frequency factor (s) and order of kinetics (b) were evaluated and discussed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. Methods: The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. Results: The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. Conclusions: The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time. (C) 2013 American Association of Physicists in Medicine. http://dx.doi.org/10.1118/1.4792459]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of a fully integrated optofluidic lab-on-a-chip sensor is presented in this paper. This device is comprised of collinear input and output waveguides that are separated by a microfluidic channel. When light is passed through the analyte contained in the fluidic gap, optical power loss occurs owing to absorption of light. Apart from absorption, a mode-mismatch between the input and output waveguides occurs when the light propagates through the fluidic gap. The degree of mode-mismatch and quantum of optical power loss due to absorption of light by the fluid form the basis of our analysis. This sensor can detect changes in refractive index and changes in concentration of species contained in the analyte. The sensitivity to detect minute changes depends on many parameters. The parameters that influence the sensitivity of the sensor are mode spot size, refractive index of the fluid, molar concentration of the species contained in the analyte, width of the fluidic gap, and waveguide geometry. By correlating various parameters, an optimal fluidic gap distance corresponding to a particular mode spot size that achieves the best sensitivity is determined both for refractive index and absorbance-based sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine powders of beta-Ga2O3 nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase beta-Ga2O3 nanostructures were obtained by thermal treatment at 900 degrees C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor-acceptor gallium-oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties and electrical conductivity of highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) are reported as a function of the processing additive conditions. The addition of dimethyl sulfoxide (DMSO) increases the conductivity and modifies the dielectric response as observed from the ellipsometric studies. Also the surface roughness and morphology change with the composition of PEDOT: PSS: DMSO and film deposition conditions. The real part of the dielectric function becomes negative in highly conducting samples, indicating the presence of delocalized charge carriers. The real and imaginary parts of the refractive index were determined as a function of wavelength. The results are consistent with the increase in conductivity upon the addition of DMSO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured GdxZn1-xO thin films with different Gd concentration from 0% to 10% deposited at 400 degrees C using the NSF technique. The films were characterized by structural, surface and optical properties, respectively. X-ray diffraction analysis shows that the Gd doped ZnO films have lattice parameters a = 3.2497 angstrom and c = 5.2018 angstrom with hexagonal structure and preferential orientation along (002) plane. The estimated values compare well with the standard values. When film thickness increases from 222 to 240 nm a high visible region transmittance (>70%) is observed. The optical band gap energy, optical constants (n and k), complex dielectric constants (epsilon(r), and epsilon(i)) and optical conductivities (sigma(r), and sigma(i)) were calculated from optical transmittance data. The optical band gap energy is 3.2 eV for pure ZnO film and 3.6 eV for Gd0.1Zn0.9-O film. The PL studies confirm the presence of a strong UV emission peak at 399 nm. Besides, the UV emission of ZnO films decreases with the increase of Gd doping concentration correspondingly the ultra-violet emission is replaced by blue and green emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with the influence of Er-doping level and thermal annealing on the optical properties of amorphous Ge-Ga-S thin films. Nominal compositions of (GeS2)(75)(Ga2S3)(25) doped with high concentrations of 2.1 and 2.4 mol% Er2S3 (corresponding to 1.2 and 1.4 at% Er, respectively) have been chosen for this work. The results have been related to those obtained for the un-doped samples. The values of the refractive index, the absorption coefficient and optical band gap have been determined from the transmittance data. It has been found that the optical band gap of un-doped and 2.1 mol% Er2S3-doped films slightly increases with annealing temperature, whereas at 2.4 mol% Er2S3-doping level it is decreased. The dependences of the optical parameters on the erbium concentration and effect of annealing in the temperature range of 100-200 degrees C have been evaluated and discussed in relation to possible structural changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research article describes the large scale fabrication of ZnO nanorods of various shapes on Si(100) substrate, by using metalorganic precursor of Zn in solutions with microwave as the source of energy. This is a low temperature, environmental friendly and rapid thin film deposition process, where ZnO nanorods (1-3 mu m length) were grown only in 1-5 min of microwave irradiation. All as-synthesized nanorods are of single crystalline grown along the < 0001 > crystallographic direction. The coated nanorods were found to be highly dense having a thickness of similar to 1-3 mu m over the entire area 20 mm x 20 mm of the substrate. The ZnO thin film comprising of nanorods exhibits good adhesion with the substrate. A possible mechanism for the initial nucleation and growth of ZnO is discussed. A cross over from a strong visible light emission to an enhanced UV emission is observed, when the nature of the surfactants are varied from polymeric to ionic and nonionic. The position of the chromaticity coordinates in yellow region of the color space gives an impression of white light generation from these coatings by exciting with a blue laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most charge generation studies on organic solar cells focus on the conventional mode of photocurrent generation derived from light absorption in the electron donor component (so called channel I). In contrast, relatively little attention has been paid to the alternate generation pathway: light absorption in the electron acceptor followed by photo-induced hole transfer (channel II). By using the narrow optical gap polymer poly(3,6-dithieno3,2-b] thiophen-2-yl)-2,5-bis(2-octyldodecyl)-pyrrolo- 3,4-c]pyrrole-1,4-dione-5',5 `'-diyl-alt-4,8-bis(dodecyloxy) benzo1,2-b:4,5-b'] dithiophene-2,6-diyl with two complimentary fullerene absorbers; phenyl-C-61-butyric acid methyl ester, and phenyl-C-71-butyric acid methyl ester (70-PCBM), we have been able to quantify the photocurrent generated each of the mechanisms and find a significant fraction (>30%), which is derived in particular from 70-PCBM light absorption.