940 resultados para Object Oriented Programming (Computing)
Resumo:
"Preprint for a workshop sponsored by NASA Langley Research Center, Hampton, Virginia, and the American Institute of Aeronautics and Astronautics, New York, and held in Hampton, Virginia, November 7-8, 1978."
Resumo:
"UIUCDCS-R-75-724"
Resumo:
Vita.
Resumo:
"Results from a search of the technical report database over a 10-year period ... references cover only unclassified, unlimited document references with abstracts."
Resumo:
Includes bibliographies.
Resumo:
Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.
Resumo:
There is growing interest in the use of context-awareness as a technique for developing pervasive computing applications that are flexible, adaptable, and capable of acting autonomously on behalf of users. However, context-awareness introduces a variety of software engineering challenges. In this paper, we address these challenges by proposing a set of conceptual models designed to support the software engineering process, including context modelling techniques, a preference model for representing context-dependent requirements, and two programming models. We also present a software infrastructure and software engineering process that can be used in conjunction with our models. Finally, we discuss a case study that demonstrates the strengths of our models and software engineering approach with respect to a set of software quality metrics.
Resumo:
A major task of traditional temporal event sequence mining is to find all frequent event patterns from a long temporal sequence. In many real applications, however, events are often grouped into different types, and not all types are of equal importance. In this paper, we consider the problem of efficient mining of temporal event sequences which lead to an instance of a specific type of event. Temporal constraints are used to ensure sensibility of the mining results. We will first generalise and formalise the problem of event-oriented temporal sequence data mining. After discussing some unique issues in this new problem, we give a set of criteria, which are adapted from traditional data mining techniques, to measure the quality of patterns to be discovered. Finally we present an algorithm to discover potentially interesting patterns.
Resumo:
-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.
Resumo:
Logistics distribution network design is one of the major decision problems arising in contemporary supply chain management. The decision involves many quantitative and qualitative factors that may be conflicting in nature. This paper applies an integrated multiple criteria decision making approach to design an optimal distribution network. In the approach, the analytic hierarchy process (AHP) is used first to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, the goal programming (GP) model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. In this paper, two commercial packages are used: Expert Choice for determining the AHP priorities of the warehouses, and LINDO for solving the GP model. © 2007 IEEE.
Resumo:
This thesis describes research on End-User Computing (EUC) in small business in an environment where no Information System (IS) support and expertise are available. The research aims to identify the factors that contribute to EUC Sophistication and understand the extent small firms are capable of developing their own applications. The intention is to assist small firms to adopt EUC, encourage better utilisation of their IT resources and gain the benefits associated with computerisation. The factors examined are derived inductively from previous studies where a model is developed to map these factors with the degree of sophistication associated with IT and EUC. This study attempts to combine the predictive power of quantitative research through surveys with the explanatory power of qualitative research through action-oriented case study. Following critical examination of the literature, a survey of IT Adoption and EUC was conducted. Instruments were then developed to measure EUC and IT Sophistication indexes based on sophistication constructs adapted from previous studies using data from the survey. This is followed by an in-depth action case study involving two small firms to investigate the EUC phenomenon in its real life context. The accumulated findings from these mixed research strategies are used to form the final model of EUC Sophistication in small business. Results of the study suggest both EUC Sophistication and the Presence of EUC in small business are affected by Management Support and Behaviour towards EUC. Additionally EUC Sophistication is also affected by the presence of an EUC Champion. Results are also consistent with respect to the independence between IT Sophistication and EUC Sophistication. The main research contributions include an accumulated knowledge of EUC in small business, the Model of EUC Sophistication, an instrument to measure EUC Sophistication Index for small firms, and a contribution to research methods in IS.
Resumo:
The 2011 National Student Survey (NSS) revealed that 40% of full-time students in England did not think that the feedback on their work has been helpful, even though 66% of these students agreed that the feedback was detailed and 62% of them agreed that the feedback has been prompt. Detailed feedback that is not considered helpful by students means a waste of tutors' time while students continue to struggle with their learning. What do students consider as helpful feedback? What are the qualities of helpful feedback? What are the preferred forms of feedback? How should tutors write feedback so that students will find it helpful? Can ICT help to improve the quality of feedback? In our ongoing search for answers to the above questions, we have trialled the use of a novel Internet application, called eCAF, to assess programming coursework from Engineering, Mathematics and Computing students and have collected their views on the feedback received through a survey. The survey reveals that most students prefer electronic feedback as given through eCAF, with verbal feedback ranked second and hand-written feedback ranked even lower. The survey also indicates that the feedback from some tutors is considered more helpful than others. We report on the detailed findings of the survey. By comparing the kinds of feedback given by each tutor who took part in the trial, we explore ways to improve the helpfulness of feedback on programming coursework in a bid to promote learning amongst engineering students.