940 resultados para OBSESSIVE-COMPULSIVE SCALE
Resumo:
Abstract One requirement for psychotherapy research is an accurate assessment of therapeutic interventions across studies. This study compared frequency and depth of therapist interventions from a dynamic perspective across four studies, conducted in four countries, including three treatment arms of psychodynamic psychotherapy, and one each of psychoanalysis and CBT. All studies used the Psychodynamic Intervention Rating Scales (PIRS) to identify 10 interventions from transcribed whole sessions early and later in treatment. The PIRS adequately categorized all interventions, except in CBT (only 91-93% categorized). As hypothesized, interpretations were present in all dynamic therapies and relatively absent in CBT. Proportions of interpretations increased over time. Defense interpretations were more common than transference interpretations, which were most prevalent in psychoanalysis. Depth of interpretations also increased over time. These data can serve as norms for measuring where on the supportive-interpretive continuum a dynamic treatment lies, as well as identify potentially mutative interventions for further process and outcome study.
Resumo:
Geological and geomorphological mapping at scale 1:10.000 besides from being an important source of scientific information it is also a necessary tool for municipal organs in order to make proper decisions when dealing with geo-environmental problems concerning integral territorial development. In this work, detailed information is given on the contents of such maps, their social and economical application, and a balance of the investment and gains that derives from them
Resumo:
PURPOSE: Quality of care and its measurement represent a considerable challenge for pediatric smaller-scale comprehensive cancer centers (pSSCC) providing surgical oncology services. It remains unclear whether center size and/or yearly case-flow numbers influence the quality of care, and therefore impact outcomes for this population of patients. PATIENTS AND METHODS: We performed a 14-year, retrospective, single-center analysis, assessing adherence to treatment protocols and surgical adverse events as quality indicators in abdominal and thoracic pediatric solid tumor surgery. RESULTS: Forty-eight patients, enrolled in a research-associated treatment protocol, underwent 51 cancer-oriented surgical procedures. All the protocols contain precise technical criteria, indications, and instructions for tumor surgery. Overall, compliance with such items was very high, with 997/1,035 items (95 %) meeting protocol requirements. There was no surgical mortality. Twenty-one patients (43 %) had one or more complications, for a total of 34 complications (66 % of procedures). Overall, 85 % of complications were grade 1 or 2 according to Clavien-Dindo classification requiring observation or minor medical treatment. Case-sample and outcome/effectiveness data were comparable to published series. Overall, our data suggest that even with the modest caseload of a pSSCC within a Swiss tertiary academic hospital, compliance with international standards can be very high, and the incidence of adverse events can be kept minimal. CONCLUSION: Open and objective data sharing, and discussion between pSSCCs, will ultimately benefit our patient populations. Our study is an initial step towards the enhancement of critical self-review and quality-of-care measurements in this setting.
Resumo:
Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p ≤ 5 × 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 × 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.
Resumo:
Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran's eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps.
Resumo:
SUMMARY: We present a tool designed for visualization of large-scale genetic and genomic data exemplified by results from genome-wide association studies. This software provides an integrated framework to facilitate the interpretation of SNP association studies in genomic context. Gene annotations can be retrieved from Ensembl, linkage disequilibrium data downloaded from HapMap and custom data imported in BED or WIG format. AssociationViewer integrates functionalities that enable the aggregation or intersection of data tracks. It implements an efficient cache system and allows the display of several, very large-scale genomic datasets. AVAILABILITY: The Java code for AssociationViewer is distributed under the GNU General Public Licence and has been tested on Microsoft Windows XP, MacOSX and GNU/Linux operating systems. It is available from the SourceForge repository. This also includes Java webstart, documentation and example datafiles.
Resumo:
Converging evidence suggests that recurrent excessive calorie restriction causes binge eating by promoting behavioral disinhibition and overeating. This interpretation suggests that cognitive adaptations may surpass physiological regulations of metabolic needs after recurrent cycles of dieting and binging. Intermittent access to palatable food has long been studied in rats, but the consequences of such diet cycling procedures on the cognitive control of food seeking remain unclear. Female Wistar rats were divided in two groups matched for food intake and body weight. One group received standard chow pellets 7 days/week, whereas the second group was given chow pellets for 5 days and palatable food for 2 days over seven consecutive weeks. Rats were also trained for operant conditioning. Intermittent access to palatable food elicited binging behavior and reduced intake of normal food. Rats with intermittent access to palatable food failed to exhibit anxiety-like behaviors in the elevated plus maze, but displayed reduced locomotor activity in the open field and developed a blunted corticosterone response following an acute stress across the diet procedure. Trained under a progressive ratio schedule, both groups exhibited the same motivation for sweetened food pellets. However, in contrast to controls, rats with a history of dieting and binging exhibited a persistent compulsive-like behavior when access to preferred pellets was paired with mild electrical foot shock punishments. These results highlight the intricate development of anxiety-like disorders and cognitive deficits leading to a loss of control over preferred food intake after repetitive cycles of intermittent access to palatable food.
Resumo:
In this paper, we present a method to deal with the constraints of the underwater medium for finding changes between sequences of underwater images. One of the main problems of underwater medium for automatically detecting changes is the low altitude of the camera when taking pictures. This emphasise the parallax effect between the images as they are not taken exactly at the same position. In order to solve this problem, we are geometrically registering the images together taking into account the relief of the scene
Resumo:
Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.
Resumo:
Introduction: Following a disaster, up to 50% of mass casualties are children. The number of disaster increases worldwide, including in Switzerland. Following national order, the mapping of the various risks of disaster in Switzerland will be completed by the end of 2012. Pre-hospital disaster drills and plans are well established and regularly tested. In-hospital disaster plans are much less frequently tested, if only available. Pediatric in-hospital full scale disaster exercises have never been reported in Switzerland. Based on our local constraints, we set up and evaluated a disaster plan during two full scale exercises. Methods: In a university hospital treating more than 35 000 pediatric emergencies per year, two exercises involving mock victims of a disaster aged 9 to 14 years old were successively set up over a period of 3 years. The exercises were planned during the day, without modification of the normal emergency room activities. The hospital staff was informed and trained in advance. Variables such as the alarm timing and transmission, triage set-up and function, special disaster medical records utilization, communication and victims' identification were assessed. Family members participated in the second exercise. An evaluation team observed and record exercises activities, identifying strength and weaknesses. Results: On two separate occasions, a total of 44 mock patients participated, were triaged, admitted and treated in the hospital according to usual standards of care. Alarm transmission was not appropriate during the first exercise. Triage overload occurred on one occasion. In-hospital communication needed readjustment. Identification and in-hospital tracking of the children remained problematic. Hospital employees showed great enthusiasm and stressed the positive effect of full scale exercises on their knowledge of the hospital disaster plan. Conclusions: Performing real life disaster exercises in a pediatric hospital was very beneficial. The disaster plan was adapted to local needs and updated accordingly. An alarm transmission protocol was elaborated and tested. Triage set-up was adapted and tested. A hospital identification plan for injured children was created and tested. Full scale hospital exercises evaluating disaster plans revealed several weaknesses in the system. Practice readjustments based on local experience were made. A tested pediatric disaster plan adapted to local constraints could minimize chaos, optimize care and support in the event of a real disaster. Children's identification and family reunification following a disaster remains a challenge.
Resumo:
In dealing with systems as complex as the cytoskeleton, we need organizing principles or, short of that, an empirical framework into which these systems fit. We report here unexpected invariants of cytoskeletal behavior that comprise such an empirical framework. We measured elastic and frictional moduli of a variety of cell types over a wide range of time scales and using a variety of biological interventions. In all instances elastic stresses dominated at frequencies below 300 Hz, increased only weakly with frequency, and followed a power law; no characteristic time scale was evident. Frictional stresses paralleled the elastic behavior at frequencies below 10 Hz but approached a Newtonian viscous behavior at higher frequencies. Surprisingly, all data could be collapsed onto master curves, the existence of which implies that elastic and frictional stresses share a common underlying mechanism. Taken together, these findings define an unanticipated integrative framework for studying protein interactions within the complex microenvironment of the cell body, and appear to set limits on what can be predicted about integrated mechanical behavior of the matrix based solely on cytoskeletal constituents considered in isolation. Moreover, these observations are consistent with the hypothesis that the cytoskeleton of the living cell behaves as a soft glassy material, wherein cytoskeletal proteins modulate cell mechanical properties mainly by changing an effective temperature of the cytoskeletal matrix. If so, then the effective temperature becomes an easily quantified determinant of the ability of the cytoskeleton to deform, flow, and reorganize.