812 resultados para Nonlinear optical
Resumo:
We present a detailed study of the Baryscan technique, a new efficient alternative to the widespread Z-scan technique which has been demonstrated [Opt. Lett. 36:8, 2011] to reach among the highest sensitivity levels. This method is based upon the measurement of optical nonlinearities by means of beam centroid displacements with a position sensitive detector and is able to deal with any kind of lensing effect. This technique is applied here to measure pump-induced electronic refractive index changes (population lens), which can be discriminated from parasitic thermal effects by using a time-resolved Baryscan experiment. This method is validated by evaluating the polarizability variation at the origin of the population lens observed in the reference Cr3+:GSGG laser material.
Resumo:
This work reports on the photophysical properties of zinc porphyrins meso-tetrakis methylpyridiniumyl (Zn2+TMPyP) and meso-tetrakis sulfonatophenyl (Zn2+TPPS) in homogeneous aqueous solutions and in the presence of sodium dodecyl sulfate (SDS) and cetyltrimethyl ammonium bromide (CTAB) micelles. The excited-state dynamic was investigated with the Z-scan technique, UV-Vis absorption, and fluorescence spectroscopy. Photophysical parameters were obtained by analyzing the experimental data with a conventional five-energy-level diagram. The interaction of the charged side porphyrin groups with oppositely charged surfactants can reduce the electrostatic repulsion between porphyrin molecules leading to aggregation, which affected the porphyrin characteristics such as absorption cross-sections, lifetimes and quantum yields. The interaction between anionic ZnTPPS with cationic CTAB micelles induced the formation of porphyrin J-aggregates, while this effect was not observed in the interaction of ZnTMPyP with SDS micelles. This difference is, probably, due to the difference in electrostatic repulsion between the porphyrin molecules. The insights obtained by these results are important for the understanding of the photophysical behavior of porphyrins, regarding potential applications in pharmacokinetics as encapsulation of photosensitizer for drug delivery systems and in its interaction with cellular membrane.
Resumo:
[EN] In this work we propose a new variational model for the consistent estimation of motion fields. The aim of this work is to develop appropriate spatio-temporal coherence models. In this sense, we propose two main contributions: a nonlinear flow constancy assumption, similar in spirit to the nonlinear brightness constancy assumption, which conveniently relates flow fields at different time instants; and a nonlinear temporal regularization scheme, which complements the spatial regularization and can cope with piecewise continuous motion fields. These contributions pose a congruent variational model since all the energy terms, except the spatial regularization, are based on nonlinear warpings of the flow field. This model is more general than its spatial counterpart, provides more accurate solutions and preserves the continuity of optical flows in time. In the experimental results, we show that the method attains better results and, in particular, it considerably improves the accuracy in the presence of large displacements.
Resumo:
[EN] The seminal work of Horn and Schunck [8] is the first variational method for optical flow estimation. It introduced a novel framework where the optical flow is computed as the solution of a minimization problem. From the assumption that pixel intensities do not change over time, the optical flow constraint equation is derived. This equation relates the optical flow with the derivatives of the image. There are infinitely many vector fields that satisfy the optical flow constraint, thus the problem is ill-posed. To overcome this problem, Horn and Schunck introduced an additional regularity condition that restricts the possible solutions. Their method minimizes both the optical flow constraint and the magnitude of the variations of the flow field, producing smooth vector fields. One of the limitations of this method is that, typically, it can only estimate small motions. In the presence of large displacements, this method fails when the gradient of the image is not smooth enough. In this work, we describe an implementation of the original Horn and Schunck method and also introduce a multi-scale strategy in order to deal with larger displacements. For this multi-scale strategy, we create a pyramidal structure of downsampled images and change the optical flow constraint equation with a nonlinear formulation. In order to tackle this nonlinear formula, we linearize it and solve the method iteratively in each scale. In this sense, there are two common approaches: one that computes the motion increment in the iterations, like in ; or the one we follow, that computes the full flow during the iterations, like in. The solutions are incrementally refined ower the scales. This pyramidal structure is a standard tool in many optical flow methods.
Resumo:
The heart is a wonderful but complex organ: it uses electrochemical mechanisms in order to produce mechanical energy to pump the blood throughout the body and allow the life of humans and animals. This organ can be subject to several diseases and sudden cardiac death (SCD) is the most catastrophic manifestation of these diseases, responsible for the death of a large number of people throughout the world. It is estimated that 325000 Americans annually die for SCD. SCD most commonly occurs as a result of reentrant tachyarrhythmias (ventricular tachycardia (VT) and ventricular fibrillation (VF)) and the identification of those patients at higher risk for the development of SCD has been a difficult clinical challenge. Nowadays, a particular electrocardiogram (ECG) abnormality, “T-wave alternans” (TWA), is considered a precursor of lethal cardiac arrhythmias and sudden death, a sensitive indicator of risk for SCD. TWA is defined as a beat-to-beat alternation in the shape, amplitude, or timing of the T-wave on the ECG, indicative of the underlying repolarization of cardiac cells [5]. In other words TWA is the macroscopic effect of subcellular and celluar mechanisms involving ionic kinetics and the consequent depolarization and repolarization of the myocytes. Experimental activities have shown that TWA on the ECG is a manifestation of an underlying alternation of long and short action potential durations (APDs), the so called APD-alternans, of cardiac myocytes in the myocardium. Understanding the mechanism of APDs-alternans is the first step for preventing them to occur. In order to investigate these mechanisms it’s very important to understand that the biological systems are complex systems and their macroscopic properties arise from the nonlinear interactions among the parts. The whole is greater than the sum of the parts, and it cannot be understood only by studying the single parts. In this sense the heart is a complex nonlinear system and its way of working follows nonlinear dynamics; alternans also, they are a manifestation of a phenomenon typical in nonlinear dynamical systems, called “period-dubling bifurcation”. Over the past decade, it has been demonstrated that electrical alternans in cardiac tissue is an important marker for the development of ventricular fibrillation and a significant predictor for mortality. It has been observed that acute exposure to low concentration of calcium does not decrease the magnitude of alternans and sustained ventricular Fibrillation (VF) is still easily induced under these condition. However with prolonged exposure to low concentration of calcium, alternans disappears, but VF is still inducible. This work is based on this observation and tries to make it clearer. The aim of this thesis is investigate the effect of hypocalcemia spatial alternans and VF doing experiments with canine hearts and perfusing them with a solution with physiological ionic concentration and with a solution with low calcium concentration (hypocalcemia); in order to investigate the so called memory effect, the experimental activity was modified during the way. The experiments were performed with the optical mapping technique, using voltage-sensitive dye, and a custom made Java code was used in post-processing. Finding the Nolasco and Dahlen’s criterion [8] inadequate for the prediction of alternans, and takin into account the experimental results, another criterion, which consider the memory effect, has been implemented. The implementation of this criterion could be the first step in the creation of a method, AP-based, discriminating who is at risk if developing VF. This work is divided into four chapters: the first is a brief presentation of the physiology of the heart; the second is a review of the major theories and discovers in the study of cardiac dynamics; the third chapter presents an overview on the experimental activity and the optical mapping technique; the forth chapter contains the presentation of the results and the conclusions.
Resumo:
This thesis reports on the experimental realization, characterization and application of a novel microresonator design. The so-called “bottle microresonator” sustains whispering-gallery modes in which light fields are confined near the surface of the micron-sized silica structure by continuous total internal reflection. While whispering-gallery mode resonators in general exhibit outstanding properties in terms of both temporal and spatial confinement of light fields, their monolithic design makes tuning of their resonance frequency difficult. This impedes their use, e.g., in cavity quantum electrodynamics (CQED) experiments, which investigate the interaction of single quantum mechanical emitters of predetermined resonance frequency with a cavity mode. In contrast, the highly prolate shape of the bottle microresonators gives rise to a customizable mode structure, enabling full tunability. The thesis is organized as follows: In chapter I, I give a brief overview of different types of optical microresonators. Important quantities, such as the quality factor Q and the mode volume V, which characterize the temporal and spatial confinement of the light field are introduced. In chapter II, a wave equation calculation of the modes of a bottle microresonator is presented. The intensity distribution of different bottle modes is derived and their mode volume is calculated. A brief description of light propagation in ultra-thin optical fibers, which are used to couple light into and out of bottle modes, is given as well. The chapter concludes with a presentation of the fabrication techniques of both structures. Chapter III presents experimental results on highly efficient, nearly lossless coupling of light into bottle modes as well as their spatial and spectral characterization. Ultra-high intrinsic quality factors exceeding 360 million as well as full tunability are demonstrated. In chapter IV, the bottle microresonator in add-drop configuration, i.e., with two ultra-thin fibers coupled to one bottle mode, is discussed. The highly efficient, nearly lossless coupling characteristics of each fiber combined with the resonator's high intrinsic quality factor, enable resonant power transfers between both fibers with efficiencies exceeding 90%. Moreover, the favorable ratio of absorption and the nonlinear refractive index of silica yields optical Kerr bistability at record low powers on the order of 50 µW. Combined with the add-drop configuration, this allows one to route optical signals between the outputs of both ultra-thin fibers, simply by varying the input power, thereby enabling applications in all-optical signal processing. Finally, in chapter V, I discuss the potential of the bottle microresonator for CQED experiments with single atoms. Its Q/V-ratio, which determines the ratio of the atom-cavity coupling rate to the dissipative rates of the subsystems, aligns with the values obtained for state-of-the-art CQED microresonators. In combination with its full tunability and the possibility of highly efficient light transfer to and from the bottle mode, this makes the bottle microresonator a unique tool for quantum optics applications.
Resumo:
This dissertation deals with the design and the characterization of novel reconfigurable silicon-on-insulator (SOI) devices to filter and route optical signals on-chip. Design is carried out through circuit simulations based on basic circuit elements (Building Blocks, BBs) in order to prove the feasibility of an approach allowing to move the design of Photonic Integrated Circuits (PICs) toward the system level. CMOS compatibility and large integration scale make SOI one of the most promising material to realize PICs. The concepts of generic foundry and BB based circuit simulations for the design are emerging as a solution to reduce the costs and increase the circuit complexity. To validate the BB based approach, the development of some of the most important BBs is performed first. A novel tunable coupler is also presented and it is demonstrated to be a valuable alternative to the known solutions. Two novel multi-element PICs are then analysed: a narrow linewidth single mode resonator and a passband filter with widely tunable bandwidth. Extensive circuit simulations are carried out to determine their performance, taking into account fabrication tolerances. The first PIC is based on two Grating Assisted Couplers in a ring resonator (RR) configuration. It is shown that a trade-off between performance, resonance bandwidth and device footprint has to be performed. The device could be employed to realize reconfigurable add-drop de/multiplexers. Sensitivity with respect to fabrication tolerances and spurious effects is however observed. The second PIC is based on an unbalanced Mach-Zehnder interferometer loaded with two RRs. Overall good performance and robustness to fabrication tolerances and nonlinear effects have confirmed its applicability for the realization of flexible optical systems. Simulated and measured devices behaviour is shown to be in agreement thus demonstrating the viability of a BB based approach to the design of complex PICs.
Resumo:
Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn
Resumo:
Optical pulse amplification in doped fibers is studied using an extended power transport equation for the coupled pulse spectral components. This equation includes the effects of gain saturation, gain dispersion, fiber dispersion, fiber nonlinearity, and amplified spontaneous emission. The new model is employed to study nonlinear gain-induced effects on the spectrotemporal characteristics of amplified subpicosecond pulses, in both the anomalous and the normal dispersion regimes.
Resumo:
A method of opto-optical modulation in liquid crystals is reported. An Ar+-laser beam is employed to modulate a second He–Ne laser. The highest frequency achieved was 1.5 × 103 pulses per second with input modulating powers smaller than 10 mW. A homeotropic N-(p-methoxybenzylidene)-p-butylaniline liquid-crystal cell was employed as the nonlinear medium.
Resumo:
In this paper, the optical behavior of a nonlinear interface is studied. The nonlinear medium has been a nematic liquid crystal, namely MBBA, and the nonlinear one, glasses of different types (F-10 and F-2) depending on the experimental needs. The anchoring forces at the boundary have been found to inhibit the action of the evanescent field in the case of total internal reflection. Most of observed nonlinearities are due to thermal effects. As a consequence, liquid crystals do not seem to be good candidates for total internal reflection optical bistability.
Resumo:
Output bits from an optical logic cell present noise due to the type of technique used to obtain the Boolean functions of two input data bits. We have simulated the behavior of an optically programmable logic cell working with Fabry Perot-laser diodes of the same type employed in optical communications (1550nm) but working here as amplifiers. We will report in this paper a study of the bit noise generated from the optical non-linearity process allowing the Boolean function operation of two optical input data signals. Two types of optical logic cells will be analyzed. Firstly, a classical "on-off" behavior, with transmission operation of LD amplifier and, secondly, a more complicated configuration with two LD amplifiers, one working on transmission and the other one in reflection mode. This last configuration has nonlinear behavior emulating SEED-like properties. In both cases, depending on the value of a "1" input data signals to be processed, a different logic function can be obtained. Also a CW signal, known as control signal, may be apply to fix the type of logic function. The signal to noise ratio will be analyzed for different parameters, as wavelength signals and the hysteresis cycles regions associated to the device, in relation with the signals power level applied. With this study we will try to obtain a better understanding of the possible effects present on an optical logic gate with Laser Diodes.
Resumo:
As has been shown in the literature, an interface between two dielectric materials, one of which has an intensity-dependent refractive index is capable of exhibing a wide range of complex and potentially useful optical phenomena.
Resumo:
As reported previously, an interface between linear and liquid crystal media shows some nonlinear properties that can be employed in the analysis of this type of optical bistable device.
Resumo:
In this paper, a novel method to generate ultrawideband (UWB) doublets is proposed and experimentally demonstrated, which is based on exploiting the cross-phase modulation in a semiconductor optical amplifier (SOA). The key component is an integrated SOA Mach-Zehnder interferometer pumped with an optical carrier modulated by a Gaussian pulse. The transfer function of the nonlinear conversion process leads to the generation of UWB doublet pulses by tuning the SOA currents to different values.