961 resultados para Non-reversible stochastic dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical ventilation (MV) is life-saving but potentially harmful for lungs of premature infants. So far, animal models dealt with the acute impact of MV on immature lungs, but less with its delayed effects. We used a newborn rodent model including non-surgical and therefore reversible intubation with moderate ventilation and hypothesized that there might be distinct gene expression patterns after a ventilation-free recovery period compared to acute effects directly after MV. Newborn rat pups were subjected to 8 hr of MV with 60% oxygen (O(2)), 24 hr after injection of lipopolysaccharide (LPS), intended to create a low inflammatory background as often recognized in preterm infants. Animals were separated in controls (CTRL), LPS injection (LPS), or full intervention with LPS and MV with 60% O(2) (LPS + MV + O(2)). Lungs were recovered either directly following (T:0 hr) or 48 hr after MV (T:48 hr). Histologically, signs of ventilator-induced lung injury (VILI) were observed in LPS + MV + O(2) lungs at T:0 hr, while changes appeared similar to those known from patients with chronic lung disease (CLD) with fewer albeit larger gas exchange units, at T:48 hr. At T:0 hr, LPS + MV + O(2) increased gene expression of pro-inflammatory MIP-2. In parallel anti-inflammatory IL-1Ra gene expression was increased in LPS and LPS + MV + O(2) groups. At T:48 hr, pro- and anti-inflammatory genes had returned to their basal expression. MMP-2 gene expression was decreased in LPS and LPS + MV + O(2) groups at T:0 hr, but no longer at T:48 hr. MMP-9 gene expression levels were unchanged directly after MV. However, at T:48 hr, gene and protein expression increased in LPS + MV + O(2) group. In conclusion, this study demonstrates the feasibility of delayed outcome measurements after a ventilation-free period in newborn rats and may help to further understand the time-course of molecular changes following MV. The differences obtained from the two time points could be interpreted as an initial transitory increase of inflammation and a delayed impact of the intervention on structure-related genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metacommunity ecology focuses on the interaction between local communities and is inherently linked to dispersal as a result. Within this framework, communities are structured by a combination of in-site responses to the immediate environment (species sorting), stochasticity (patch dynamics), and connections to other communities via distance between communities and dispersal (neutrality), and source-sink dynamics (mass effects; see Chapter 1 for a detailed description of metacommunity theory, the study site, and macroinvertebrate communities found). In Chapter 2 I describe spatial scale of study and dispersal ability as both have the ability to influence the degree to which communities interact. However, little is known about how these factors influence the importance of all metacommunity dynamics. I compared dispersal mode of immature aquatic insects and dispersal ability of winged adults across multiple spatial scales in a large river. The strongest drivers of river communities were patch dynamics, followed by species sorting, then neutrality. Active dispersers during aquatic lifestages on average exhibited lower patch dynamics, higher species sorting, and significant mass effects compared to passive dispersers. Active and strong dispersers also had a scale-independent influence of neutrality, while neutrality was stronger at broader spatial scale for passive and weak dispersers. These results indicate as dispersal ability increases patch dynamics decreases, species sorting increases, and neutrality should decrease. The perceived influence of neutrality may also be dependent on spatial scale and dispersal ability. In Chapter 3 I describe how river benthic macroinvertebrate communities may influence tributary invertebrate communities via adult flight and tributaries may influence mainstem communities via immature drift. This relationship may also depend on relative mainstem and tributary size, as well as abiotic tributary influence on mainstem habitat. To investigate the interaction between a larger river and tributary I sampled mainstem benthic invertebrate communities and quantified habitat of a 7th order river (West Branch Susquehanna River) above and below a 5th order tributary confluence, as well as 0.95-3.2 km upstream in the tributary. Non-metric multidimensional scaling showed similar patterns of clustering between sampling locations for both habitat characteristics and invertebrate communities. In addition, mainstem river communities and habitat directly downstream of the tributary confluence cluster tightly together, intermediate between tributary and mid-channel river samples. In Bray-Curtis dissimilarity comparisons between tributary and mainstem river communities the furthest upstream tributary communities were least similar to river communities. Middle tributary samples were also closest by Euclidean distance to the upstream mainstem riffle and exhibited higher similarity to mid-channel samples than the furthest downstream tributary communities. My results indicate river and tributary benthic invertebrate communities may interact and likely result in direct and indirect mass effects of a tributary on the downstream mainstem community by invertebrate drift and habitat restructuring via material delivery from the tributary. I also showed likely direct effects of adult dispersal from the river and oviposition in proximal tributary locations where Euclidian, rather than river, distance may be more important in determining river-tributary interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The collapse of the Soviet Union at the beginning of the 1990s also meant the end of the idea of a common soviet identity incarnated in the "soviet man" and the new "historic community of the soviet people". While this idea still lives on in the generations of the 1920s to 1940s, the younger generations tend to prefer identification with family, profession, ethnic group or religion. Ms. Alexakhina set out to investigate different interethnic interaction strategies in the multi-ethnic context of the Russian Federation, with an emphasis on analysing the role of cultural and ethno-demographic characteristics of minority ethnic groups. It aimed to identify those specific patterns of interaction dynamics that have emerged in response to the political and economic transformation at present under way. The basic supposition was that the size and growth of an ethnic population are defined not only by demographic features such as fertility, mortality and net migration, but are also dependent on processes interethnic interaction and ethnic transition. The central hypothesis of the project was that the multi-ethnic and multi-cultural composition of Russia is apparently manifesting itself in the ethnic minority groups in various forms, but particularly in the form of ethnic revival and/or assimilation. The results of these complex phenomena are manifested as changes in ethnic attachments (national re-identification and language behaviour (multi-lingualism, language transition and loss of the mother tongue). The stress of the political and economic crisis has stimulated significant changes in ethnographic, social and cultural characteristics of inter-ethnic dynamics such as the rate of national re-identification, language behaviour, migration activity and the spread of mixed marriages, among both those minorities with a long history of settlement in Russia and those that were annexed during the soviet period. Patterns of language behaviour and the spread of mixed marriages were taken as the main indicators of the directions of interethnic interaction described as assimilation, ethnic revival and cultural pluralism. The first stage of the research involved a statistical analysis of census data from 1959 to 1994 in order to analyse the changing demographic composition of the largest ethnic groups of the Russian Federation. Until 1989 interethnic interaction in soviet society was distinguished by the process of russification but the political and economic transformation has stimulated the process of ethnic revival, leading to an apparent fall in the size of the Russian population due to ethnic re-identification by members of other ethnic groups who had previously identified themselves as Russian. Cross-classification of nationalities by demographic, social and cultural indicators has shown that the most important determinants of the nature of interethnic interaction are cultural factors such as religion and language affiliation. The analysis of the dynamics of language shift through the study of bilingualism and the domains of language usage for different demographic groups revealed a strong correlation between recognition of Russian as a mother tongue among some non-Russian ethnic groups and the declining size of these groups. The main conclusion from this macro-analysis of census data was the hypothesis of the growing importance of social and political factors upon ethnic succession, that ethnic identity is no longer a stable characteristic but has become dynamic in nature. In order to verify this hypothesis Ms. Alexakhina conducted a survey in four regions showing different patterns of interethnic interaction: the Karelian Republic, Buryatiya, the Nenezkii Autonomous Region and Tatarstan. These represented the west, east, north and south of the Russian Federation. Samples for the survey were prepared on the basis of census lists so as to exclude mono-Russian families in favour of mixed and ethnic-minority families. The survey confirmed the significant growth in the importance of ethnic affiliation in the everyday lives of people in the Federation following the de-centralisation of the political and economic spheres. Language was shown to be a key symbol of the consciousness of national distinction, confirmed by the fact that the process of russification has been reversed by the active mastering of the languages of titular nationalities. The results also confirmed that individual ethnic identity has ceased to be a fixed personal characteristic of one's cultural and genetic belonging, and people's social adaptation to the current political, social and economic conditions is also demonstrated in changes in individual ethnic self-identification. In general terms, the dynamic nature of national identity means that ethnic identity is at present acquiring the special features of overall social identity, for which the frequent change of priorities is an inherent feature of a person's life cycle. These are mainly linked with a multi-ethnic environment and high individual social mobility. From her results Ms. Alexakhina concludes that the development of national languages and multi-lingualism, together with the preservation of Russian as a state language, seems to be the most promising path to peaceful coexistence and the development of the national cultures of different ethnic groups within the Russian Federation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through studying German, Polish and Czech publications on Silesia, Mr. Kamusella found that most of them, instead of trying to objectively analyse the past, are devoted to proving some essential "Germanness", "Polishness" or "Czechness" of this region. He believes that the terminology and thought-patterns of nationalist ideology are so deeply entrenched in the minds of researchers that they do not consider themselves nationalist. However, he notes that, due to the spread of the results of the latest studies on ethnicity/nationalism (by Gellner, Hobsbawm, Smith, Erikson Buillig, amongst others), German publications on Silesia have become quite objective since the 1980s, and the same process (impeded by under funding) has been taking place in Poland and the Czech Republic since 1989. His own research totals some 500 pages, in English, presented on disc. So what are the traps into which historians have been inclined to fall? There is a tendency for them to treat Silesia as an entity which has existed forever, though Mr. Kamusella points out that it emerged as a region only at the beginning of the 11th century. These same historians speak of Poles, Czechs and Germans in Silesia, though Mr. Kamusella found that before the mid-19th century, identification was with an inhabitant's local area, religion or dynasty. In fact, a German national identity started to be forged in Prussian Silesia only during the Liberation War against Napoleon (1813-1815). It was concretised in 1861 in the form of the first Prussian census, when the language a citizen spoke was equated with his/her nationality. A similar census was carried out in Austrian Silesia only in 1881. The censuses forced the Silesians to choose their nationality despite their multiethnic multicultural identities. It was the active promotion of a German identity in Prussian Silesia, and Vienna's uneasy acceptance of the national identities in Austrian Silesia which stimulated the development of Polish national, Moravian ethnic and Upper Silesian ethnic regional identities in Upper Silesia, and Polish national, Czech national, Moravian ethnic and Silesian ethnic identities in Austrian Silesia. While traditional historians speak of the "nationalist struggle" as though it were a permanent characteristic of Silesia, Mr. Kamusella points out that such a struggle only developed in earnest after 1918. What is more, he shows how it has been conveniently forgotten that, besides the national players, there were also significant ethnic movements of Moravians, Upper Silesians, Silesians and the tutejsi (i.e. those who still chose to identify with their locality). At this point Mr. Kamusella moves into the area of linguistics. While traditionally historians have spoken of the conflicts between the three national languages (German, Polish and Czech), Mr Kamusella reminds us that the standardised forms of these languages, which we choose to dub "national", were developed only in the mid-18th century, after 1869 (when Polish became the official language in Galicia), and after the 1870s (when Czech became the official language in Bohemia). As for standard German, it was only widely promoted in Silesia from the mid 19th century onwards. In fact, the majority of the population of Prussian Upper Silesia and Austrian Silesia were bi- or even multilingual. What is more, the "Polish" and "Czech" Silesians spoke were not the standard languages we know today, but a continuum of West-Slavic dialects in the countryside and a continuum of West-Slavic/German creoles in the urbanised areas. Such was the linguistic confusion that, from time to time, some ethnic/regional and Church activists strove to create a distinctive Upper Silesian/Silesian language on the basis of these dialects/creoles, but their efforts were thwarted by the staunch promotion of standard German, and after 1918, of standard Polish and Czech. Still on the subject of language, Mr. Kamusella draws attention to a problem around the issue of place names and personal names. Polish historians use current Polish versions of the Silesian place names, Czechs use current Polish/Czech versions of the place names, and Germans use the German versions which were in use in Silesia up to 1945. Mr. Kamusella attempted to avoid this, as he sees it, nationalist tendency, by using an appropriate version of a place name for a given period and providing its modern counterpart in parentheses. In the case of modern place names he gives the German version in parentheses. As for the name of historical figures, he strove to use the name entered on the birth certificate of the person involved, and by doing so avoid such confusion as, for instance, surrounds the Austrian Silesian pastor L.J. Sherschnik, who in German became Scherschnick, in Polish, Szersznik, and in Czech, Sersnik. Indeed, the prospective Silesian scholar should, Mr. Kamusella suggests, as well as the three languages directly involved in the area itself, know English and French, since many documents and books on the subject have been published in these languages, and even Latin, when dealing in depth with the period before the mid-19th century. Mr. Kamusella divides the policies of ethnic cleansing into two categories. The first he classifies as soft, meaning that policy is confined to the educational system, army, civil service and the church, and the aim is that everyone learn the language of the dominant group. The second is the group of hard policies, which amount to what is popularly labelled as ethnic cleansing. This category of policy aims at the total assimilation and/or physical liquidation of the non-dominant groups non-congruent with the ideal of homogeneity of a given nation-state. Mr. Kamusella found that soft policies were consciously and systematically employed by Prussia/Germany in Prussian Silesia from the 1860s to 1918, whereas in Austrian Silesia, Vienna quite inconsistently dabbled in them from the 1880s to 1917. In the inter-war period, the emergence of the nation-states of Poland and Czechoslovakia led to full employment of the soft policies and partial employment of the hard ones (curbed by the League of Nations minorities protection system) in Czechoslovakian Silesia, German Upper Silesia and the Polish parts of Upper and Austrian Silesia. In 1939-1945, Berlin started consistently using all the "hard" methods to homogenise Polish and Czechoslovakian Silesia which fell, in their entirety, within the Reich's borders. After World War II Czechoslovakia regained its prewar part of Silesia while Poland was given its prewar section plus almost the whole of the prewar German province. Subsequently, with the active involvement and support of the Soviet Union, Warsaw and Prague expelled the majority of Germans from Silesia in 1945-1948 (there were also instances of the Poles expelling Upper Silesian Czechs/Moravians, and of the Czechs expelling Czech Silesian Poles/pro-Polish Silesians). During the period of communist rule, the same two countries carried out a thorough Polonisation and Czechisation of Silesia, submerging this region into a new, non-historically based administrative division. Democratisation in the wake of the fall of communism, and a gradual retreat from the nationalist ideal of the homogeneous nation-state with a view to possible membership of the European Union, caused the abolition of the "hard" policies and phasing out of the "soft" ones. Consequently, limited revivals of various ethnic/national minorities have been observed in Czech and Polish Silesia, whereas Silesian regionalism has become popular in the westernmost part of Silesia which remained part of Germany. Mr. Kamusella believes it is possible that, with the overcoming of the nation-state discourse in European politics, when the expression of multiethnicity and multilingualism has become the cause of the day in Silesia, regionalism will hold sway in this region, uniting its ethnically/nationally variegated population in accordance with the principle of subsidiarity championed by the European Union.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variables involved in the equations that describe realistic synaptic dynamics always vary in a limited range. Their boundedness makes the synapses forgetful, not for the mere passage of time, but because new experiences overwrite old memories. The forgetting rate depends on how many synapses are modified by each new experience: many changes means fast learning and fast forgetting, whereas few changes means slow learning and long memory retention. Reducing the average number of modified synapses can extend the memory span at the price of a reduced amount of information stored when a new experience is memorized. Every trick which allows to slow down the learning process in a smart way can improve the memory performance. We review some of the tricks that allow to elude fast forgetting (oblivion). They are based on the stochastic selection of the synapses whose modifications are actually consolidated following each new experience. In practice only a randomly selected, small fraction of the synapses eligible for an update are actually modified. This allows to acquire the amount of information necessary to retrieve the memory without compromising the retention of old experiences. The fraction of modified synapses can be further reduced in a smart way by changing synapses only when it is really necessary, i.e. when the post-synaptic neuron does not respond as desired. Finally we show that such a stochastic selection emerges naturally from spike driven synaptic dynamics which read noisy pre and post-synaptic neural activities. These activities can actually be generated by a chaotic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High density oligonucleotide expression arrays are a widely used tool for the measurement of gene expression on a large scale. Affymetrix GeneChip arrays appear to dominate this market. These arrays use short oligonucleotides to probe for genes in an RNA sample. Due to optical noise, non-specific hybridization, probe-specific effects, and measurement error, ad-hoc measures of expression, that summarize probe intensities, can lead to imprecise and inaccurate results. Various researchers have demonstrated that expression measures based on simple statistical models can provide great improvements over the ad-hoc procedure offered by Affymetrix. Recently, physical models based on molecular hybridization theory, have been proposed as useful tools for prediction of, for example, non-specific hybridization. These physical models show great potential in terms of improving existing expression measures. In this paper we demonstrate that the system producing the measured intensities is too complex to be fully described with these relatively simple physical models and we propose empirically motivated stochastic models that compliment the above mentioned molecular hybridization theory to provide a comprehensive description of the data. We discuss how the proposed model can be used to obtain improved measures of expression useful for the data analysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upon its genesis during apoptosis, ceramide promotes gross reorganization of the plasma membrane structure involving clustering of signalling molecules and an amplification of vesicle formation, fusion and trafficking. The annexins are a family of proteins, which in the presence of Ca(2+), bind to membranes containing negatively charged phospholipids. Here, we show that ceramide increases affinity of annexin A1-membrane interaction. In the physiologically relevant range of Ca(2+) concentrations, this leads to an increase in the Ca(2+)sensitivity of annexin A1-membrane interaction. In fixed cells, using a ceramide-specific antibody, we establish a direct interaction of annexin A1 with areas of the plasma membrane enriched in ceramide (ceramide platforms). In living cells, the intracellular dynamics of annexin A1 match those of plasmalemmal ceramide. Among proteins of the annexin family, the interaction with ceramide platforms is restricted to annexin A1 and is conveyed by its unique N-terminal domain. We demonstrate that intracellular Ca(2+)overload occurring at the conditions of cellular stress induces ceramide production. Using fluorescently tagged annexin A1 as a reporter for ceramide platforms and annexin A6 as a non-selective membrane marker, we visualize ceramide platforms for the first time in living cells and provide evidence for a ceramide-driven segregation and internalization of membrane-associated proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although molecular modeling has been used extensively to predict elastic properties of materials, modeling of more complex phenomenon such as fracture has only recently been possible with the development of new force fields such as ReaxFF, which is used in this work. It is not fully understood what molecular modeling parameters such as thermostat type, thermostat coupling, time step, system size, and strain rate are required for accurate modeling of fracture. Selection of modeling parameters to model fracture can be difficult and non-intuitive compared to modeling elastic properties using traditional force fields, and the errors generated by incorrect parameters may be non-obvious. These molecular modeling parameters are systematically investigated and their effects on the fracture of well-known carbon materials are analyzed. It is determined that for coupling coefficients of 250 fs and greater do not result in substantial differences in the stress-strain response of the materials using any thermostat type. A time step of 0.5 fs of smaller is required for accurate results. Strain rates greater than 2.2 ns-1 are sufficient to obtain repeatable results with slower strain rates for the materials studied. The results of this study indicate that further refinement of the Chenoweth parameter set is required to accurately predict the mechanical response of carbon-based systems. The ReaxFF has been used extensively to model systems in which bond breaking and formation occur. In particular ReaxFF has been used to model reactions of small molecules. Some elastic and fracture properties have been successfully modeled using ReaxFF in materials such as silicon and some metals. However, it is not clear if current parameterizations for ReaxFF are able to accurately reproduce the elastic and fracture properties of carbon materials. The stress-strain response of a new ReaxFF parameterization is compared to the previous parameterization and density functional theory results for well-known carbon materials. The new ReaxFF parameterization makes xv substantial improvements to the predicted mechanical response of carbon materials, and is found to be suitable for modeling the mechanical response of carbon materials. Finally, a new material composed of carbon nanotubes within an amorphous carbon (AC) matrix is modeled using the ReaxFF. Various parameters that may be experimentally controlled are investigated such as nanotube bundling, comparing multi-walled nanotube with single-walled nanotubes, and degree of functionalization of the nanotubes. Elastic and fracture properties are investigated for the composite systems and compared to results of pure-nanotube and pure-AC models. It is found that the arrangement of the nanotubes and degree of crosslinking may substantially affect the properties of the systems, particularly in the transverse directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface tension forces are significant at millimeter length-scales, causing profoundly different flow morphologies in microchannels than in macroscale flows. The existence and morphology of thin liquid films is particularly relevant for predicting performance and operational stability of devices containing microscale two phase flows. Analytical, computational, and experimental methods previously employed in the study of thin liquid films are discussed. Thicknesses before and after a novel film morphology, referred to as a `shock,' are measured with a novel film thickness measurement technique that uses confocal microscopy. Film thicknesses predicted by previous work are compared to experimental results. Methods for increasing the accuracy of the confocal film thickness measurement technique are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: The authors studied the long-term efficacy of deep brain stimulation (DBS) of the posteroventral lateral globus pallidus internus up to 2 years postoperatively in patients with primary non-DYT1 generalized dystonia or choreoathetosis. The results are briefly compared with those reported for DBS in DYT1 dystonia (Oppenheim dystonia), which is caused by the DYT1 gene. METHODS: Enrollment in this prospective expanded pilot study was limited to adult patients with severely disabling, medically refractory non-DYT1 generalized dystonia or choreoathetosis. Six consecutive patients underwent follow-up examinations at defined intervals of 3 months, 1 year, and 2 years postsurgery. There were five women and one man, and their mean age at surgery was 45.5 years. Formal assessments included both the Burke-Fahn-Marsden dystonia scale and the recently developed Unified Dystonia Rating Scale. Two patients had primary generalized non-DYT1 dystonia, and four suffered from choreoathetosis secondary to infantile cerebral palsy. Bilateral quadripolar DBS electrodes were implanted in all instances, except in one patient with markedly asymmetrical symptoms. There were no adverse events related to surgery. The Burke-Fahn-Marsden scores in the two patients with generalized dystonia improved by 78 and 71% at 3 months, by 82 and 69% at 1 year, and by 78 and 70% at 2 years postoperatively. This was paralleled by marked amelioration of disability scores. The mean improvement in Burke-Fahn-Marsden scores in patients with choreoathetosis was 12% at 3 months, 29% at 1 year, and 23% at 2 years postoperatively, which was not significant. Two of these patients thought that they had achieved marked improvement at 2 years postoperatively, although results of objective evaluations were less impressive. In these two patients there was a minor but stable improvement in disability scores. All patients had an improvement in pain scores at the 2-year follow-up review. Medication was tapered off in both patients with generalized dystonia and reduced in two of the patients with choreoathetosis. All stimulation-induced side effects were reversible on adjustment of the DBS settings. Energy consumption of the batteries was considerably higher than in patients with Parkinson disease. CONCLUSIONS: Chronic pallidal DBS is a safe and effective procedure in generalized non-DYT1 dystonia, and it may become the procedure of choice in patients with medically refractory dystonia. Postoperative improvement of choreoathetosis is more modest and varied, and subjective ratings of outcome may exceed objective evaluations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Community dynamics in a calcareous grassland (Mesobrometum) in Egerkingen (Jura mountains, Switzerland) were investigated for 53 non-woody species in 25 1-m2 plots over 6 years. 50 0.0 1-m2 subplots per plot were recorded. The derived variables were spatial frequency, temporal frequency, frequency fluctuation, turnover, and cumulative frequency (each species), and cumulative species richness (all species). Spectra for 53 species of all variables were different for the two investigated spatial scales (0.0 1 m2, 1 m2). The comparison with other investigations of similar grass lands showed that the behaviour of some species is specific for this type of vegetation in general (e.g. Achillea millefolium, Arrhenatherum elatius, Bromus erectus ), but most species behaved in a stand-specific way, i.e. they may play another (similar or completely different) role in another grassland stand. Six spatio-temporal patterns were defined across species. To understand community dynamics, not only the dynamics of mobility but also of frequency fluctuations and spatial distribution of the species are fundamental. In addition, the understanding of temporal behaviour of all species present should be included. Averages always hide important information of vegetation dynamics, as was shown by the present investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite enormous research in the field of hypertension, its pathophysiology still remains largely unresolved and appears to be multifactorial. In the present communication, we have analyzed the status of nitric oxide (NO) in the patients with essential hypertension and age matched controls. We have found that the levels of NO are lowered in essential hypertension. The normalization of blood pressure by administration of antihypertensive therapy causes rise in the NO level indicating that perturbed NO status in essential hypertension is reversible. Addition of antioxidant to the antihypertensive drugs causes a further, though non significant, rise in the levels of NO, suggesting that antioxidants may be combined with antihypertensive drugs as adjunct in the management of essential hypertension.