816 resultados para Non-economic benefit
Resumo:
This study presents a model of economic growth based on saturating demand, where the demand for a good has a certain maximum amount. In this model, the economy grows not only by the improvement in production efficiency in each sector, but also by the migration of production factors (labor in this model) from demand-saturated sectors to the non-saturated sector. It is assumed that the production of a brand-new good will begin after all the existing goods are demand-saturated. Hence, there are cycles where the production of a new good emerges followed by the demand saturation of that good. The model then predicts that should the growth rate be stable and positive in the long run, the above-mentioned cycle must become shorter over time. If the length of cycles is constant over time, the growth rate eventually approaches zero because the number of goods produced grows.
Resumo:
The scope of recent regional trade agreements (RTAs) is becoming much wider in terms of including several provisions such as competition policy or intellectual property. This paper empirically examines how far advanced, non-conventional provisions in RTAs increase trade values among RTA member countries, by estimating the gravity equation with more disaggregated indicators for RTAs. As a result, we find that the provision on competition policy has the largest impacts on trade values, following that on government procurement. Our further analysis reveals that the more significant roles of these two provisions can be also observed in the impacts on the intensive and extensive margins.
Resumo:
In rural Ethiopia, livelihood diversification is essential for households to be able to sustain themselves. Declining agricultural profits and a land shortage have accelerated this diversification. While the past literature has ignored young women's economic contributions in its discussions about livelihood diversification, this research indicates that the current rapid educational expansion for girls has changed their economic role in their households. This has resulted in changes in the conventional life courses of women in rural Ethiopia as they have more choices in terms of education, marriage, and the types and location of their economic activities, due to the increasing importance of young women's economic contributions to their households and their improved educational opportunities. The aim of this paper is to elucidate how the economic environment and government educational policy have affected young women's lives in terms of education, marriage, economic activities, and intra-household power relationships, especially with their parents.
Resumo:
This paper empirically investigates how far free trade agreements (FTAs) successfully lower tariff rates and non-tariff barriers (NTBs) for manufacturing industries by employing the bilateral tariff and NTB data in a time series for countries around the world. We find that FTAs under GATT Article XXIV and the Enabling Clause contribute to reducing tariff rates by 2.1% points and 1.5% points, respectively. In the case of NTBs, their respective impacts are 6.6% points and 5.7% points. Membership in the World Trade Organization (WTO) does not contribute greatly to reducing tariff rates but does play a significant role in reducing NTBs. These results provide important implications for the literature on numerical assessments of FTAs.
Resumo:
Using data from a self-administered survey of 1,017 households we assess the long-term impact of establishing a special economic zone, on those who are exogenously selected to be displaced. We find those who are displaced suffer from lower land compensation and lack of adequate property rights. There is also some evidence of lower labour market participation among those who are displaced. However, in the long term, across measurable welfare indicators, we do not find that displaced households are significantly different from other households. One source of this resilience is through employment at the special economic zone – which is higher among displaced households compared to other households. Another factor that contributed to the absence of differences is spill-over effects; which made access to employment, education and other facilities about homogenous across displaced and non-displaced households.
Resumo:
Growing scarcity, increasing demand and bad management of water resources are causing weighty competition for water and consequently managers are facing more and more pressure in an attempt to satisfy users? requirement. In many regions agriculture is one of the most important users at river basin scale since it concentrates high volumes of water consumption during relatively short periods (irrigation season), with a significant economic, social and environmental impact. The interdisciplinary characteristics of related water resources problems require, as established in the Water Framework Directive 2000/60/EC, an integrated and participative approach to water management and assigns an essential role to economic analysis as a decision support tool. For this reason, a methodology is developed to analyse the economic and environmental implications of water resource management under different scenarios, with a focus on the agricultural sector. This research integrates both economic and hydrologic components in modelling, defining scenarios of water resource management with the goal of preventing critical situations, such as droughts. The model follows the Positive Mathematical Programming (PMP) approach, an innovative methodology successfully used for agricultural policy analysis in the last decade and also applied in several analyses regarding water use in agriculture. This approach has, among others, the very important capability of perfectly calibrating the baseline scenario using a very limited database. However one important disadvantage is its limited capacity to simulate activities non-observed during the reference period but which could be adopted if the scenario changed. To overcome this problem the classical methodology is extended in order to simulate a more realistic farmers? response to new agricultural policies or modified water availability. In this way an economic model has been developed to reproduce the farmers? behaviour within two irrigation districts in the Tiber High Valley. This economic model is then integrated with SIMBAT, an hydrologic model developed for the Tiber basin which allows to simulate the balance between the water volumes available at the Montedoglio dam and the water volumes required by the various irrigation users.
Resumo:
The European energy sector is undergoing a major transformation and is facing a series of difficult challenges. These include a high and increasing dependence on external energy resources; dramatically reduce the need for the emissions of greenhouse gases to meet environmental objectives and the difficulties related to the promotion of energy market effectively integrated and competitive. Some of the policies associated with the various objectives are sometimes in conflict with each other, while in other cases are mutually reinforcing.The aim of this paper is to do a scienti?c analysis of the developments so far and the expectations for the coming period focusing on the pillars of energy policy in the EU in terms of security of supply, environment, climate change and promoting a competitive and integrated market. The use of renewable energy sources is seen as a key element of European energy policy and should help to: reduce dependence on fuel from non-member countries; reduce emissions from carbon-based energy sources, and; decouple energy costs from oil prices.
Resumo:
In the last few years, technical debt has been used as a useful means for making the intrinsic cost of the internal software quality weaknesses visible. This visibility is made possible by quantifying this cost. Specifically, technical debt is expressed in terms of two main concepts: principal and interest. The principal is the cost of eliminating or reducing the impact of a, so called, technical debt item in a software system; whereas the interest is the recurring cost, over a time period, of not eliminating a technical debt item. Previous works about technical debt are mainly focused on estimating principal and interest, and on performing a cost-benefit analysis. This cost-benefit analysis allows one to determine if to remove technical debt is profitable and to prioritize which items incurring in technical debt should be fixed first. Nevertheless, for these previous works technical debt is flat along the time. However the introduction of new factors to estimate technical debt may produce non flat models that allow us to produce more accurate predictions. These factors should be used to estimate principal and interest, and to perform cost-benefit analysis related to technical debt. In this paper, we take a step forward introducing the uncertainty about the interest, and the time frame factors so that it becomes possible to depict a number of possible future scenarios. Estimations obtained without considering the possible evolution of the interest over time may be less accurate as they consider simplistic scenarios without changes.
Resumo:
This exploratory study presents a comparison between two samples of microenterprises. One sample is formed by companies involved in product innovation during the current economic crisis and the other is formed by companies not involved in product innovation during the same period. The comparison analyzes which internal factors, supported by the literature as the influential factors of small business innovation, are significant when explaining the main differences between innovative microenterprise and non-innovative ones. The results suggest that the factors related to the organization and activity of the company are the factors which explain the differences between these two types of firms, rather than those factors related to micro-entrepreneurs own profile.
Analysis of the impact of globalization and economic growth on food security in developing countries
Resumo:
A pesar de los importantes avances en la reducción del hambre, la seguridad alimentaria continúa siendo un reto de dimensión internacional. La seguridad alimentaria es un concepto amplio y multidimensional, cuyo análisis abarca distintas escalas y horizontes temporales. Dada su complejidad, la identificación de las causas de la inseguridad alimentaria y la priorización de las medias para abordarlas, son dos cuestiones que suscitan un intenso debate en la actualidad. El objetivo de esta tesis es evaluar el impacto de la globalización y el crecimiento económico en la seguridad alimentaria en los países en desarrollo, desde una perspectiva macro y un horizonte temporal a largo plazo. La influencia de la globalización se aborda de una manera secuencial. En primer lugar, se analiza la relación entre la inversión público-privada en infraestructuras y las exportaciones agrarias. A continuación, se estudia el impacto de las exportaciones agrarias en los indicadores de seguridad alimentaria. El estudio del impacto del crecimiento económico aborda los cambios paralelos en la distribución de la renta, y cómo la inequidad influye en el comportamiento de la seguridad alimentaria nacional. Además, se analiza en qué medida el crecimiento económico contribuye a acelerar el proceso de mejora de la seguridad alimentaria. Con el fin de conseguir los objetivos mencionados, se llevan a cabo varios análisis econométricos basados en datos de panel, en el que se combinan datos de corte transversal de 52 países y datos temporales comprendidos en el periodo 1991-2012. Se analizan tanto variables en niveles como variables en tasas de cambio anual. Se aplican los modelos de estimación de efectos variables y efectos fijos, ambos en niveles y en primeras diferencias. La tesis incluye cuatro tipos de modelos econométricos, cada uno de ellos con sus correspondientes pruebas de robustez y especificaciones. Los resultados matizan la importancia de la globalización y el crecimiento económico como mecanismos de mejora de la seguridad alimentaria en los países en desarrollo. Se obtienen dos conclusiones relativas a la globalización. En primer lugar, los resultados sugieren que la promoción de las inversiones privadas en infraestructuras contribuye a aumentar las exportaciones agrarias. En segundo lugar, se observa que las exportaciones agrarias pueden tener un impacto negativo en los indicadores de seguridad alimentaria. La combinación de estas dos conclusiones sugiere que la apertura comercial y financiera no contribuye por sí misma a la mejora de la seguridad alimentaria en los países en desarrollo. La apertura internacional de los países en desarrollo ha de ir acompañada de políticas e inversiones que desarrollen sectores productivos de alto valor añadido, que fortalezcan la economía nacional y reduzcan su dependencia exterior. En relación al crecimiento económico, a pesar del incuestionable hecho de que el crecimiento económico es una condición necesaria para reducir los niveles de subnutrición, no es una condición suficiente. Se han identificado tres estrategias adicionales que han de acompañar al crecimiento económico con el fin de intensificar su impacto positivo sobre la subnutrición. Primero, es necesario que el crecimiento económico sea acompañado de una distribución más equitativa de los ingresos. Segundo, el crecimiento económico ha de reflejarse en un aumento de inversiones en salud, agua y saneamiento y educación. Se observa que, incluso en ausencia de crecimiento económico, mejoras en el acceso a agua potable contribuyen a reducir los niveles de población subnutrida. Tercero, el crecimiento económico sostenible en el largo plazo parece tener un mayor impacto positivo sobre la seguridad alimentaria que el crecimiento económico más volátil o inestable en el corto plazo. La estabilidad macroeconómica se identifica como una condición necesaria para alcanzar una mayor mejora en la seguridad alimentaria, incluso habiéndose mejorado la equidad en la distribución de los ingresos. Por último, la tesis encuentra que los países en desarrollo analizados han experimentado diferentes trayectorias no lineales en su proceso de mejora de sus niveles de subnutrición. Los resultados sugieren que un mayor nivel inicial de subnutrición y el crecimiento económico son responsables de una respuesta más rápida al reto de la mejora de la seguridad alimentaria. ABSTRACT Despite the significant reductions of hunger, food security still remains a global challenge. Food security is a wide concept that embraces multiple dimensions, and has spatial-temporal scales. Because of its complexity, the identification of the drivers underpinning food insecurity and the prioritization of measures to address them are a subject of intensive debate. This thesis attempts to assess the impact of globalization and economic growth on food security in developing countries with a macro level scale (country) and using a long-term approach. The influence of globalization is addressed in a sequential way. First, the impact of public-private investment in infrastructure on agricultural exports in developing countries is analyzed. Secondly, an assessment is conducted to determine the impact of agricultural exports on food security indicators. The impact of economic growth focuses on the parallel changes in income inequality and how the income distribution influences countries' food security performance. Furthermore, the thesis analyzes to what extent economic growth helps accelerating food security improvements. To address the above mentioned goals, various econometric models are formulated. Models use panel data procedures combining cross-sectional data of 52 countries and time series data from 1991 to 2012. Yearly data are expressed both in levels and in changes. The estimation models applied are random effects estimation and fixed effects estimations, both in levels and in first differences. The thesis includes four families of econometric models, each with its own set of robustness checks and specifications. The results qualify the relevance of globalization and economic growth as enabling mechanisms for improving food security in developing countries. Concerning globalization, two main conclusions can be drawn. First, results showed that enhancing foreign private investment in infrastructures contributes to increase agricultural exports. Second, agricultural exports appear to have a negative impact on national food security indicators. These two conclusions suggest that trade and financial openness per se do not contribute directly to improve food security in development countries. Both measures should be accompanied by investments and policies to support the development of national high value productive sectors, to strengthen the domestic economy and reduce its external dependency. Referring to economic growth, despite the unquestionable fact that income growth is a pre-requisite for reducing undernourishment, results suggest that it is a necessary but not a sufficient condition. Three additional strategies should accompany economic growth to intensifying its impact on food security. Firstly, it is necessary that income growth should be accompanied by a better distribution of income. Secondly, income growth needs to be followed by investments and policies in health, sanitation and education to improve food security. Even if economic growth falters, sustained improvements in the access to drinking water may still give rise to reductions in the percentage of undernourished people. And thirdly, long-term economic growth appears to have a greater impact on reducing hunger than growth regimes that combine periods of growth peaks followed by troughs. Macroeconomic stability is a necessary condition for accelerating food security. Finally, the thesis finds that the developing countries analyzed have experienced different non-linear paths toward improving food security. Results also show that a higher initial level of undernourishment and economic growth result in a faster response for improving food security.
Resumo:
In the current context of economic crisis, there is an increasing need for new approaches for solving social problems without relying upon public resources. With this regard, social entrepreneurship has been arising as an important solution to develop social innovations and address social needs. Social entrepreneurs found new ventures that aim at solving social problems. The main purpose of this research is to identify the general profile of the social entrepreneurs and the main features of social companies, such as geographic scope, profit or non-profit approach, collaborative networks, decision making structure, and typologies of customers that benefit from their social actions.
Resumo:
La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
La energía transportada por el oleaje a través de los océanos (energía undimotriz) se enmarca dentro de las denominadas energías oceánicas. Su aprovechamiento para generar energía eléctrica (o ser aprovechada de alguna otra forma) es una idea reflejada ya hace más de dos siglos en una patente (1799). Desde entonces, y con especial intensidad desde los años 70, ha venido despertando el interés de instituciones ligadas al I+D+i y empresas del sector energético y tecnológico, debido principalmente a la magnitud del recurso disponible. Actualmente se puede considerar al sector en un estado precomercial, con un amplio rango de dispositivos y tecnologías en diferente grado de desarrollo en los que ninguno destaca sobre los otros (ni ha demostrado su viabilidad económica), y sin que se aprecie una tendencia a converger un único dispositivo (o un número reducido de ellos). El recurso energético que se está tratando de aprovechar, pese a compartir la característica de no-controlabilidad con otras fuentes de energía renovable como la eólica o la solar, presenta una variabilidad adicional. De esta manera, diferentes localizaciones, pese a poder presentar recursos de contenido energético similar, presentan oleajes de características muy diferentes en términos de alturas y periodos de oleaje, y en la dispersión estadística de estos valores. Esta variabilidad en el oleaje hace que cobre especial relevancia la adecuación de los dispositivos de aprovechamiento de energía undimotriz (WEC: Wave Energy Converter) a su localización, de cara a mejorar su viabilidad económica. Parece razonable suponer que, en un futuro, el proceso de diseño de un parque de generación undimotriz implique un rediseño (en base a una tecnología conocida) para cada proyecto de implantación en una nueva localización. El objetivo de esta tesis es plantear un procedimiento de dimensionado de una tecnología de aprovechamiento de la energía undimotriz concreta: los absorbedores puntuales. Dicha metodología de diseño se plantea como un problema de optimización matemático, el cual se resuelve utilizando un algoritmo de optimización bioinspirado: evolución diferencial. Este planteamiento permite automatizar la fase previa de dimensionado implementando la metodología en un código de programación. El proceso de diseño de un WEC es un problema de ingería complejo, por lo que no considera factible el planteamiento de un diseño completo mediante un único procedimiento de optimización matemático. En vez de eso, se platea el proceso de diseño en diferentes etapas, de manera que la metodología desarrollada en esta tesis se utilice para obtener las dimensiones básicas de una solución de referencia de WEC, la cual será utilizada como punto de partida para continuar con las etapas posteriores del proceso de diseño. La metodología de dimensionado previo presentada en esta tesis parte de unas condiciones de contorno de diseño definidas previamente, tales como: localización, características del sistema de generación de energía eléctrica (PTO: Power Take-Off), estrategia de extracción de energía eléctrica y concepto concreto de WEC). Utilizando un algoritmo de evolución diferencial multi-objetivo se obtiene un conjunto de soluciones factibles (de acuerdo con una ciertas restricciones técnicas y dimensionales) y óptimas (de acuerdo con una serie de funciones objetivo de pseudo-coste y pseudo-beneficio). Dicho conjunto de soluciones o dimensiones de WEC es utilizado como caso de referencia en las posteriores etapas de diseño. En el documento de la tesis se presentan dos versiones de dicha metodología con dos modelos diferentes de evaluación de las soluciones candidatas. Por un lado, se presenta un modelo en el dominio de la frecuencia que presenta importantes simplificaciones en cuanto al tratamiento del recurso del oleaje. Este procedimiento presenta una menor carga computacional pero una mayor incertidumbre en los resultados, la cual puede traducirse en trabajo adicional en las etapas posteriores del proceso de diseño. Sin embargo, el uso de esta metodología resulta conveniente para realizar análisis paramétricos previos de las condiciones de contorno, tales como la localización seleccionada. Por otro lado, la segunda metodología propuesta utiliza modelos en el domino estocástico, lo que aumenta la carga computacional, pero permite obtener resultados con menos incertidumbre e información estadística muy útil para el proceso de diseño. Por este motivo, esta metodología es más adecuada para su uso en un proceso de dimensionado completo de un WEC. La metodología desarrollada durante la tesis ha sido utilizada en un proyecto industrial de evaluación energética preliminar de una planta de energía undimotriz. En dicho proceso de evaluación, el método de dimensionado previo fue utilizado en una primera etapa, de cara a obtener un conjunto de soluciones factibles de acuerdo con una serie de restricciones técnicas básicas. La selección y refinamiento de la geometría de la solución geométrica de WEC propuesta fue realizada a posteriori (por otros participantes del proyecto) utilizando un modelo detallado en el dominio del tiempo y un modelo de evaluación económica del dispositivo. El uso de esta metodología puede ayudar a reducir las iteraciones manuales y a mejorar los resultados obtenidos en estas últimas etapas del proyecto. ABSTRACT The energy transported by ocean waves (wave energy) is framed within the so-called oceanic energies. Its use to generate electric energy (or desalinate ocean water, etc.) is an idea expressed first time in a patent two centuries ago (1799). Ever since, but specially since the 1970’s, this energy has become interesting for R&D institutions and companies related with the technological and energetic sectors mainly because of the magnitude of available energy. Nowadays the development of this technology can be considered to be in a pre-commercial stage, with a wide range of devices and technologies developed to different degrees but with none standing out nor economically viable. Nor do these technologies seem ready to converge to a single device (or a reduce number of devices). The energy resource to be exploited shares its non-controllability with other renewable energy sources such as wind and solar. However, wave energy presents an additional short-term variability due to its oscillatory nature. Thus, different locations may show waves with similar energy content but different characteristics such as wave height or wave period. This variability in ocean waves makes it very important that the devices for harnessing wave energy (WEC: Wave Energy Converter) fit closely to the characteristics of their location in order to improve their economic viability. It seems reasonable to assume that, in the future, the process of designing a wave power plant will involve a re-design (based on a well-known technology) for each implementation project in any new location. The objective of this PhD thesis is to propose a dimensioning method for a specific wave-energy-harnessing technology: point absorbers. This design methodology is presented as a mathematical optimization problem solved by using an optimization bio-inspired algorithm: differential evolution. This approach allows automating the preliminary dimensioning stage by implementing the methodology in programmed code. The design process of a WEC is a complex engineering problem, so the complete design is not feasible using a single mathematical optimization procedure. Instead, the design process is proposed in different stages, so the methodology developed in this thesis is used for the basic dimensions of a reference solution of the WEC, which would be used as a starting point for the later stages of the design process. The preliminary dimensioning methodology presented in this thesis starts from some previously defined boundary conditions such as: location, power take-off (PTO) characteristic, strategy of energy extraction and specific WEC technology. Using a differential multi-objective evolutionary algorithm produces a set of feasible solutions (according to certain technical and dimensional constraints) and optimal solutions (according to a set of pseudo-cost and pseudo-benefit objective functions). This set of solutions or WEC dimensions are used as a reference case in subsequent stages of design. In the document of this thesis, two versions of this methodology with two different models of evaluation of candidate solutions are presented. On the one hand, a model in the frequency domain that has significant simplifications in the treatment of the wave resource is presented. This method implies a lower computational load but increased uncertainty in the results, which may lead to additional work in the later stages of the design process. However, use of this methodology is useful in order to perform previous parametric analysis of boundary conditions such as the selected location. On the other hand, the second method uses stochastic models, increasing the computational load, but providing results with smaller uncertainty and very useful statistical information for the design process. Therefore, this method is more suitable to be used in a detail design process for full dimensioning of the WEC. The methodology developed throughout the thesis has been used in an industrial project for preliminary energetic assessment of a wave energy power plant. In this assessment process, the method of previous dimensioning was used in the first stage, in order to obtain a set of feasible solutions according to a set of basic technical constraints. The geometry of the WEC was refined and selected subsequently (by other project participants) using a detailed model in the time domain and a model of economic evaluation of the device. Using this methodology can help to reduce the number of design iterations and to improve the results obtained in the last stages of the project.
Resumo:
El objetivo de la tesis es estudiar la bondad del almacenamiento de energía en hidrógeno para minorar los desvíos de energía respecto a su previsión de parques eólicos y huertas solares. Para ello se ha partido de datos de energías horarias previstas con 24 h de antelación y la energía real generada. Se ha procedido a dimensionar la planta de hidrógeno, a partir de una modelización de la operación de la misma, teniendo siempre como objetivo la limitación de los desvíos. Posteriormente, se ha procedido a simular la operación de la planta con dos objetivos en mente, uno limitar los desvíos y por otro lado operar la planta como una central de bombeo, generando hidrógeno en horas valle y generando electricidad en horas punta. Las dos simulaciones se han aplicado a tres parques eólicos de diferentes potencias, y a una huerta solar fotovoltaica. Se ha realizado un estudio económico para determinar la viabilidad de las plantas dimensionadas, obteniendo como resultado que no son viables a día de hoy y con la estimación de precios considerada, necesitando disminuir considerablemente los costes, dependiendo fuertemente de la bondad de los métodos de previsión de viento. Por último se ha estudiado la influencia de la disminución de los desvíos generados sobre una red tipo de 30 nudos, obteniendo como resultado, que si bien no disminuyen sensiblemente los extra costes generados en regulación, sí que mejora la penetración de las energías renovables no despachables en la red. Se observa disminuyen los vertidos eólicos cuando se usa la planta de hidrógeno. ABSTRACT The aim of this thesis is to study the benefit of hydrogen energy storage to minimize energy deviations of Wind Power and Solar Photovoltaic (PV) Power Plants compared to its forecast. To achieve this goal, first of all we have started with hourly energy data provided 24 h in advance (scheduled energy), and real generation (measured energy). Secondly, It has been sized the hydrogen plant, from a modeling of its working mode, always keeping the goal in mind of limiting energy imbalances. Subsequently, It have been simulated the plant working mode following two goals, one, to limit energy imbalances and secondly to operate the plant as a pumping power plant, generating hydrogen-in valley hours and generating electricity at peak hours. The two simulations have been applied to three wind power plants with different installed power capacities, and a photovoltaic solar power plant. It has been done an economic analysis in order to determine the viability of this sized plants, turning out not viable plants today with the estimated prices considered, requiring significantly lower costs, depending heavily on the reliability of the Wind Power forecast methods. Finally, It has been studied the influence of decreasing measured imbalances (of energy) in a 30 grid node, resulting that, while it not reduces significantly the extra costs generated by reserve power, it does improve the penetration of non-manageable renewable energy on the grid, by reducing the curtailments of power of these plants.