961 resultados para Nitrogen bombardment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to evaluate morphogenetic characteristics and tillering dynamics in Tanzania grass fertilized and non-fertilized with nitrogen, under intermittent grazing, in the spring and the summer. The main plots were composed of four nitrogen rates (0, 100, 200 and 300 kg/ha) and the subplots were growth seasons: spring (October, November and December) and summer (January, February and March). The experimental design was of randomized block with plots subdivided by time (seasons of the year) and four replications. Urea was used as nitrogen supply and was divided into two applications: one in the spring and another in the summer. The experimental units fertilized with N rates of 200 and 300 kg/ha showed six cycles of pasture, with an average of 27 days of pasture interval, while the treatments with no fertilization and 100 kg/ha of N showed only four and five cycles of pasture, respectively. Leaf elongation rate (LER) and the leaf appearance rate (LAR) increased linearly with increasing of N rates. The greatest population density occurred in summer with the higher nitrogen rates. The treatment without N fertilization showed the lowest growth of tiller population, while the other treatments exhibited growth rates above 50% when compared with non-fertilized samples. Nitrogen rates significantly affect the leaf appearance rate and the leaf elongation rate, as well as the number of live leaves in plants of Tanzania grass in both spring and summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r(w)) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from similar to2.1 to similar to2.4 and mass-fractal correlation length xi diminishing from similar to13 nm to similar to2 nm, as r(w) is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500degreesC, in general, increases the mass-fractal dimension D, diminishes the characteristic length xi of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as similar to2.4 and similar to2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the secondary particle developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from similar to2.4 to similar to2.0 and from similar to2.7 to similar to2.5, respectively, as the aerogel bulk density increases from 0.25 (r(w)=66) up to 0.91 g/cm(3) (r(w)=6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and nitrogen adsorption techniques were used to study the temperature and time structural evolution of the nanoporosity in silica xerogels prepared from acid- and ultrasound-catalyzed hydrolysis of tetraetboxysilane (TEOS). Silica xerogels present a structure of nanopores of fully random shape, size, and distribution, which can be described by an exponential correlation function gamma(r) = exp (-r/a), where a is the correlation distance, as predicted by the Debye, Anderson, and Brumberger (DAB) model. The mean pore size was evaluated as about 1.25 nm from SAXS and about 1.9 nm from nitrogen adsorption. The nanopore elimination in TEOS sonohydrolysis-derived silica xerogels is readily accelerated at temperatures around 900 degrees C probably by the action of a viscous flow mechanism. The nanopore elimination process takes place in such a way that the pore volume fraction and the specific surface are reduced while the mean pore size remains constant. (c) 2005 WILEY-VCH Verlag GmbH S Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyanate-bridged cyclopalladated compound [Pd(N,C-dmba)(mu-NCO)](2) (1) (dmba = PhCH2NMe2) reacts in CH2Cl2 with 2,3-lutidine (2,3- lut), 3,4-lutidine (3,4-lut), 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy), to give [Pd(N, C-dmba)(NCO)(2,3-lut)] (2), [Pd(N,C-dmba)(NCO)(3,4-lut)] (3), [{Pd(N,C-dmba)(NCO)}(2)(mu-2,2'-bipy)] .CH2Cl2 (4) and [{Pd(N,C-dmba)(NCO)}(2)(mu-4,4'-bipy)] . CH2Cl2 (5), respectively. The compounds were characterized by elemental analysis, i.r. and n. m. r. spectroscopy and also by t.g.a. The i.r. spectra of (2 - 5) display typical bands of monodentate N-bonded cyanate groups, whereas the n. m. r. data of (4) are consistent with the presence of a bridging 2,2'-bipyridine ligand. Complex (4) decomposes slowly in acetone. One of the products formed, [Pd(H2CCOMe) Cl(2,2'-bipy)] (6), was characterized by X-ray diffraction. As inferred from the t.g.a., the thermal stability decreases in the order: [{Pd(N,C-dmba)(NCO)}(2) (mu-4,4'-bipy)]. CH2Cl2 (5) > [Pd(N,C-dmba)(2,3-lut)( NCO)] (2) = [Pd(N, C-dmba)(3,4-lut)(NCO)] (3) > [{Pd(N,C-dmba)(NCO)}(2)(mu- 2,2'-bipy)] .CH2Cl2 (4). According to thermal analysis and X-ray diffraction patterns compounds (2 - 3) decompose into metallic palladium Pd(0), whereas (4 - 5) decompose with the formation of PdO. The X-ray crystal and molecular structure of [Pd(N, C-dmba)( NCO)(2,3-lut)] (2) was determined. The lutidine unit is perpendicular to the coordination plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peanut response to lime has been associated to calcium (Ca) nutrition, but a higher nitrogen (N) uptake has been observed in limed plots probably due to an increase in molybdenum (Mo) availability. A two-year experiment was conducted to study the effects of Mo, cobalt (Co), and liming on peanut yields and N nutrition. Peanut seeds were treated with Mo and/or Co and grown in soil with base saturation about 13, 41, 57, and 71%. There was no effect of seed treatment with Co on peanut yields or N nutrition. Liming and Mo application increased N contents in the leaves. Nitrogen uptake was increased by Mo and liming in cv. Tatu and only by liming in cv. Tupa. Manganese (Mn) contents in the leaves were decreased by liming. The higher yields were observed when the Ca/Mn ratio in the leaves was above 25. In acid soils, low availability of Mo and Mn toxicity can impair N acquisition by peanut plants and decrease grain yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experiment was conducted to study nitrogen absorption and translocation in grain sorghum plants during their reproductive growth. Sorghum was grown in four row spacings: 50 and 70 cm in single rows, 80 and 120 cm in double rows 20 cm apart. Plant populations were 71000, 142000 and 213000 plants/ha. After flowering, samples were taken at 12 day intervals, and the plants were divided into grains and stover, where N was analyzed. There was an increase in N concentration in lower plant populations and in wider row spacings. However, total nitrogen accumulation (in kg/ha) increased as the number of plants was increased. In the vegetative parts of the plants there were higher N concentrations in lower populations showing that there was a higher N absorption and a lower translocation to the grains. When grain sorghum was grown in 50 cm rows, there was a high N accumulation, a high N translocation to the grains and the highest yield. This row spacing led to the highest N use efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Winter cover crops can affect N nutrition of the following maize crop. Although legumes have been recommend for maize rotations, in tropical areas grasses may be more interesting because they provide a longer protection of soil surface. Legumes can add N to the system and grasses can compete with maize for the available nutrient. An experiment was conducted in Botucatu, São Paulo State, Brazil, to study N dynamics in the soil surface straw-maize system as affected by N fertilization management and species included in the no-till rotation. Treatments were fallow, black oat (Avena strigosa), pearl millet (Pennisetum glaucum), white lupins (Lupinus albus), black oat fertilized with N. and pearl millet fertilized with N. Maize was grown afterwards in the same plots, receiving 0.0, 60.0 and 120.0 kg ha(-1) of N sidedressed 30 days after plant emergence. Soil, straw and maize samples were taken periodically. The highest corn yields were observed when it was cropped after pearl millet fertilized with N. Nitrogen side dressed application up to 120 kg ha(-1) was not able to avoid corn yield decrease caused by black oat. Grasses can be recommended in maize rotations in tropical areas, provided they receive nitrogen fertilizer and show no allelopathy. Due to its higher ON ratio and dry matter yield they are better than legumes, protecting the soil surface for a longer period. Pearl millet is particularly interesting because it enhances N use efficiency by the following maize crop. For a better N availability/demand synchronism, the cover crops should be desiccated right before maize planting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maltose and glucose fermentations by industrial brewing and wine yeasts strains were strongly affected by the structural complexity of the nitrogen source. In this study, four Saccharomyces cerevisiae strains, two brewing and two wine yeasts, were grown in a medium containing maltose or glucose supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low sugar concentration for brewing and wine strains, independent of nitrogen supplementation, and the type of sugar. At high sugar concentrations altered patterns of sugar fermentation were observed, and biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for brewing and wine strains. In maltose, high biomass production was observed under peptone and casamino acids for the brewing and wine strains, however efficient maltose utilization and high ethanol production was only observed in the presence of casamino acids for one brewing and one wine strain studied. Conversely, peptone and casamino acids induced higher biomass and ethanol production for the two other brewing and wine strains studied. With glucose, in general, peptone induced higher fermentation performance for all strains, and one brewing and wine strain produced the same amount of ethanol with peptone and casamino acids supplementation. Ammonium salts always induced poor yeast performance. The results described in this paper suggest that the complex nitrogen composition of the cultivation medium may create conditions resembling those responsible for inducing sluggish/stuck fermentation, and indicate that the kind and concentration of sugar, the complexity of nitrogen source and the yeast genetic background influence optimal industrial yeast fermentation performance.