881 resultados para Neuronal damage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR) triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS) in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC) superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of ionizing irradiation on testes and the protective effects of melatonin were investigated by immunohistochemical and electron microscopic methods. Eighty-two adult male Wistar rats were divided into 10 groups. The rats in the irradiated groups were exposed to a sublethal irradiation dose of 8 Gy, either to the total body or abdominopelvic region using a 60Co source at a focus of 80 cm away from the skin in the morning or evening together with vehicle (20% ethanol) or melatonin administered 24 h before (10 mg/kg), immediately before (20 mg/kg) and 24 h after irradiation (10 mg/kg), all ip. Caspace-3 immunoreactivity was increased in the irradiated group compared to control (P < 0.05). Melatonin-treated groups showed less apoptosis as indicated by a considerable decrease in caspace-3 immunoreactivity (P < 0.05). Electron microscopic examination showed that all spermatogenic cells, especially primary spermatocytes, displayed prominent degeneration in the groups submitted to total body and abdominopelvic irradiation. However, melatonin administration considerably inhibited these degenerative changes, especially in rats who received abdominopelvic irradiation. Total body and abdominopelvic irradiation induced identical apoptosis and testicular damage. Chronobiological assessment revealed that biologic rhythm does not alter the inductive effect of irradiation. These data indicate that melatonin protects against total body and abdominopelvic irradiation. Melatonin was more effective in the evening abdominopelvic irradiation and melatonin-treated group than in the total body irradiation and melatonin-treated group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal apoptosis occurs in the diabetic brain due to insulin deficiency or insulin resistance, both of which reduce the expression of stem cell factor (SCF). We investigated the possible involvement of the activation of the MAPK/ERK and/or AKT pathways in neuroprotection by SCF in diabetes. Male C57/B6 mice (20-25 g) were randomly divided into four groups of 10 animals each. The morphology of the diabetic brain in mice treated or not with insulin or SCF was evaluated by H&E staining and TUNEL. SCF, ERK1/2 and AKT were measured by Western blotting. In diabetic mice treated with insulin or SCF, there was fewer structural change and apoptosis in the cortex compared to untreated mice. The apoptosis rate of the normal group, the diabetic group receiving vehicle, the diabetic group treated with insulin, and the diabetic group treated with SCF was 0.54 ± 0.077%, 2.83 ± 0.156%, 1.86 ± 0.094%, and 1.78 ± 0.095% (mean ± SEM), respectively. SCF expression was lower in the diabetic cortex than in the normal cortex; however, insulin increased the expression of SCF in the diabetic cortex. Furthermore, expression of phosphorylated ERK1/2 and AKT was decreased in the diabetic cortex compared to the normal cortex. However, insulin or SCF could activate the phosphorylation of ERK1/2 and AKT in the diabetic cortex. The results suggest that SCF may protect the brain from apoptosis in diabetes and that the mechanism of this protection may, at least in part, involve activation of the ERK1/2 and AKT pathways. These results provide insight into the mechanisms by which SCF and insulin exert their neuroprotective effects in the diabetic brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanisms and potential clinical applications of neural precursor cells have recently been the subject of intensive study. Dlx5, a homeobox transcription factor related to the distal-less gene in Drosophila, was shown to play an important role during forebrain development. The subventricular zone (SVZ) in the adult brain harbors the largest abundance of neural precursors. The anterior SVZ (SVZa) contains the most representative neural precursors in the SVZ. Further research is necessary to elucidate how Dlx5-related genes regulate the differentiation of SVZa neural precursors. Here, we employed immunohistochemistry and molecular biology techniques to study the expression of Dlx5 and related homeobox genes Er81 and Islet1 in neonatal rat brain and in in vitro cultured SVZa neural precursors. Our results show that Dlx5 and Er81 are also highly expressed in the SVZa, rostral migratory stream, and olfactory bulb. Islet1 is only expressed in the striatum. In cultured SVZa neural precursors, Dlx5 mRNA expression gradually decreased with subsequent cell passages and was completely lost by passage four. We also transfected a Dlx5 recombinant plasmid and found that Dlx5 overexpression promoted neuronal differentiation of in vitro cultured SVZa neural precursors. Taken together, our data suggest that Dlx5 plays an important role during neuronal differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemopreventive potential of water extracts of the Brassica vegetables cabbage and kale was evaluated by administering their aqueous extracts in drinking water ad libitum to Wistar rats submitted to Ito’s hepatocarcinogenesis model (CB group and K group, respectively - 14 rats per group). Animals submitted to this same model and treated with water were used as controls (W group - 15 rats). Treatment with the vegetable extracts did not inhibit (P > 0.05) placental glutathione S-transferase-positive preneoplastic lesions (PNL). The number of apoptotic bodies did not differ (P > 0.05) among the experimental groups. Ex vivo hydrogen peroxide treatment of rat livers resulted in lower (P < 0.05) DNA strand breakage in cabbage- (107.6 ± 7.8 µm) and kale- (110.8 ± 10.0 µm) treated animals compared with control (120.9 ± 12.7 µm), as evaluated by the single cell gel (comet) assay. Treatment with cabbage (2 ± 0.3 µg/g) or kale (4 ± 0.2 µg/g) resulted in increased (P < 0.05) hepatic lutein concentration compared with control (0.5 ± 0.07 µg/g). Despite the absence of inhibitory effects of cabbage and kale aqueous extracts on PNL, these Brassica vegetables presented protection against DNA damage, an effect possibly related to increased hepatic lutein concentrations. However, it must be pointed out that the cause-effect relationship between lutein levels and protection is hypothetical and remains to be demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO). In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS) in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT). Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test) and allodynia (von Frey hair test). Control animals did not present any alteration (sham-animals). The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL), blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30) in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X) and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%). Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%), reaching the greatest increase (60%) 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interstitial fibrosis and tubular atrophy (IF/TA) are the most common cause of renal graft failure. Chronic transplant glomerulopathy (CTG) is present in approximately 1.5-3.0% of all renal grafts. We retrospectively studied the contribution of CTG and recurrent post-transplant glomerulopathies (RGN) to graft loss. We analyzed 123 patients with chronic renal allograft dysfunction and divided them into three groups: CTG (N = 37), RGN (N = 21), and IF/TA (N = 65). Demographic data were analyzed and the variables related to graft function identified by statistical methods. CTG had a significantly lower allograft survival than IF/TA. In a multivariate analysis, protective factors for allograft outcomes were: use of angiotensin-converting enzyme inhibitor (ACEI; hazard ratio (HR) = 0.12, P = 0.001), mycophenolate mofetil (MMF; HR = 0.17, P = 0.026), hepatitis C virus (HR = 7.29, P = 0.003), delayed graft function (HR = 5.32, P = 0.016), serum creatinine ≥1.5 mg/dL at the 1st year post-transplant (HR = 0.20, P = 0.011), and proteinuria ≥0.5 g/24 h at the 1st year post-transplant (HR = 0.14, P = 0.004). The presence of glomerular damage is a risk factor for allograft loss (HR = 4.55, P = 0.015). The presence of some degree of chronic glomerular damage in addition to the diagnosis of IF/TA was the most important risk factor associated with allograft loss since it could indicate chronic active antibody-mediated rejection. ACEI and MMF were associated with better outcomes, indicating that they might improve graft survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the degeneration of post-mitotic ganglion cells in ex-vivo neonatal retinal explants following axon damage. Ultrastructural features of both apoptosis and autophagy were detected. Degenerating cells reacted with antibodies specific for activated caspase-3 or -9, consistent with the presence of caspase activity. Furthermore, peptidic inhibitors of caspase-9, -6 or -3 prevented cell death (100 µM Ac-LEDH-CHO, 50 µM Ac-VEID-CHO and 10 µM Z-DEVD-fmk, respectively). Interestingly, inhibition of autophagy by 7-10 mM 3-methyl-adenine increased the rate of cell death. Immunohistochemistry data, caspase activation and caspase inhibition data suggest that axotomy of neonatal retinal ganglion cells triggers the intrinsic apoptotic pathway, which, in turn, is counteracted by a pro-survival autophagic response, demonstrated by electron microscopy profiles and pharmacological autophagy inhibitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

7-Nitroindazole (7-NI) inhibits neuronal nitric oxide synthase in vivo and reduces l-DOPA-induced dyskinesias in a rat model of parkinsonism. The aim of the present study was to determine if the anti-dyskinetic effect of 7-NI was subject to tolerance after repeated treatment and if this drug could interfere with the priming effect of l-DOPA. Adult male Wistar rats (200-250 g) with unilateral depletion of dopamine in the substantia nigra compacta were treated with l-DOPA (30 mg/kg) for 34 days. On the 1st day, 6 rats received ip saline and 6 received ip 7-NI (30 mg/kg) before l-DOPA. From the 2nd to the 26th day, all rats received l-DOPA daily and, from the 27th to the 34th day, they also received 7-NI before l-DOPA. Animals were evaluated before the drug and 1 h after l-DOPA using an abnormal involuntary movement scale and a stepping test. All rats had a similar initial motor deficit. 7-NI decreased abnormal involuntary movement induced by l-DOPA and the effect was maintained during the experiment before 7-NI, median (interquartile interval), day 26: 16.75 (15.88-17.00); day 28: 0.00 (0.00-9.63); day 29: 13.75 (2.25-15.50); day 30: 0.5 (0.00-6.25); day 31: 4.00 (0.00-7.13), and day 34: 0.5 (0.00-14.63), Friedman followed by Wilcoxon test,vs day 26, P < 0.05;. The response to l-DOPA alone was not modified by the use of 7-NI before the first administration of the drug (l-DOPA vs time interaction, F1,10 = 1.5, NS). The data suggest that tolerance to the anti-dyskinetic effects of a neuronal nitric oxide synthase inhibitor does not develop over a short-term period of repeated administration. These observations open a possible new therapeutic approach to motor complications of chronic l-DOPA therapy in patients with Parkinson’s disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effect of pulsed ultrasound therapy (UST) and antibothropic polyvalent antivenom (PAV) on the regeneration of mouse extensor digitorum longus muscle following damage by Bothrops jararacussu venom. Animals (Swiss male and female mice weighing 25.0 ± 5.0 g; 5 animals per group) received a perimuscular injection of venom (1 mg/kg) and treatment with UST was started 1 h later (1 min/day, 3 MHz, 0.3 W/cm², pulsed mode). Three and 28 days after injection, muscles were dissected and processed for light microscopy. The venom caused complete degeneration of muscle fibers. UST alone and combined with PAV (1.0 mL/kg) partially protected these fibers, whereas muscles receiving no treatment showed disorganized fascicules and fibers with reduced diameter. Treatment with UST and PAV decreased the effects of the venom on creatine kinase content and motor activity (approximately 75 and 48%, respectively). Sonication of the venom solution immediately before application decreased the in vivo and ex vivo myotoxic activities (approximately 60 and 50%, respectively). The present data show that UST counteracts some effects of B. jararacussu venom, causing structural and functional improvement of the regenerated muscle after venom injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and ofXpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to investigate the protective effect of Lawesson's reagent, an H2S donor, against alendronate (ALD)-induced gastric damage in rats. Rats were pretreated with saline or Lawesson's reagent (3, 9, or 27 µmol/kg, po) once daily for 4 days. After 30 min, gastric damage was induced by ALD (30 mg/kg) administration by gavage. On the last day of treatment, the animals were killed 4 h after ALD administration. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malondialdehyde (MDA), glutathione (GSH), proinflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL)-1β], and myeloperoxidase (MPO). Other groups were pretreated with glibenclamide (5 mg/kg, ip) or with glibenclamide (5 mg/kg, ip)+diazoxide (3 mg/kg,ip). After 1 h, 27 µmol/kg Lawesson's reagent was administered. After 30 min, 30 mg/kg ALD was administered. ALD caused gastric damage (63.35±9.8 mm2); increased levels of TNF-α, IL-1β, and MDA (2311±302.3 pg/mL, 901.9±106.2 pg/mL, 121.1±4.3 nmol/g, respectively); increased MPO activity (26.1±3.8 U/mg); and reduced GSH levels (180.3±21.9 µg/g). ALD also increased cystathionine-γ-lyase immunoreactivity in the gastric mucosa. Pretreatment with Lawesson's reagent (27 µmol/kg) attenuated ALD-mediated gastric damage (15.77±5.3 mm2); reduced TNF-α, IL-1β, and MDA formation (1502±150.2 pg/mL, 632.3±43.4 pg/mL, 78.4±7.6 nmol/g, respectively); lowered MPO activity (11.7±2.8 U/mg); and increased the level of GSH in the gastric tissue (397.9±40.2 µg/g). Glibenclamide alone reversed the gastric protective effect of Lawesson's reagent. However, glibenclamide plus diazoxide did not alter the effects of Lawesson's reagent. Our results suggest that Lawesson's reagent plays a protective role against ALD-induced gastric damage through mechanisms that depend at least in part on activation of ATP-sensitive potassium (KATP) channels.