868 resultados para Nerves, Peripheral
Resumo:
We have previously identified a cellular protein kinase activity termed TAK that specifically associates with the HIV types 1 and 2 Tat proteins. TAK hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II in vitro in a manner believed to activate transcription [Herrmann, C. H. & Rice, A. P. (1995) J. Virol. 69, 1612–1620]. We show here that the catalytic subunit of TAK is a known human kinase previously named PITALRE, which is a member of the cyclin-dependent family of proteins. We also show that TAK activity is elevated upon activation of peripheral blood mononuclear cells and peripheral blood lymphocytes and upon differentiation of U1 and U937 promonocytic cell lines to macrophages. Therefore, in HIV-infected individuals TAK may be induced in T cells following activation and in macrophages following differentiation, thus contributing to high levels of viral transcription and the escape from latency of transcriptionally silent proviruses.
Resumo:
We recently reported that HIV-1 Vif (virion infectivity factor) inhibits HIV-1 protease in vitro and in bacteria, suggesting that it may serve as the basis for the design of new protease inhibitors and treatment for HIV-1 infection. To evaluate this possibility, we synthesized peptide derivatives from the region of Vif, which inhibits protease, and tested their activity on protease. In an assay of cleavage of virion-like particles composed of HIV-1 Gag precursor polyprotein, full-length recombinant Vif, and a peptide consisting of residues 21–65 of Vif, but not a control peptide or BSA, inhibited protease activity. Vif21–65 blocked protease at a molar ratio of two to one. We then tested this peptide and a smaller peptide, Vif41–65, for their effects on HIV-1 infection of peripheral blood lymphocytes. Both Vif peptides inhibited virus expression below the limit of detection, but control peptides had no effect. To investigate its site of action, Vif21–65 was tested for its effect on Gag cleavage by protease during HIV-1 infection. We found that commensurate with its reduction of virus expression, Vif21–65 inhibited the cleavage of the polyprotein p55 to mature p24. These results are similar to those obtained by using Ro 31–8959, a protease inhibitor in clinical use. We conclude that Vif-derived peptides inhibit protease during HIV-1 infection and may be useful for the development of new protease inhibitors.
Resumo:
F- and V-type ATPases are central enzymes in energy metabolism that couple synthesis or hydrolysis of ATP to the translocation of H+ or Na+ across biological membranes. They consist of a soluble headpiece that contains the catalytic sites and an integral membrane-bound part that conducts the ion flow. Energy coupling is thought to occur through the physical rotation of a stalk that connects the two parts of the enzyme complex. This mechanism implies that a stator-like structure prevents the rotation of the headpiece relative to the membrane-bound part. Such a structure has not been observed to date. Here, we report the projected structure of the V-type Na+-ATPase of Clostridium fervidus as determined by electron microscopy. Besides the central stalk, a second stalk of 130 Å in length is observed that connects the headpiece and membrane-bound part in the periphery of the complex. This additional stalk is likely to be the stator.
Resumo:
Human herpesvirus 6 (HHV-6) like other herpesviruses, expresses sequentially immediate early (IE), early, and late genes during lytic infection. Evidence of ability to establish latent infection has not been available, but by analogy with other herpesviruses it could be expected that IE genes that regulate and transactivate late genes would not be expressed. We report that peripheral blood mononuclear cells of healthy individuals infected with HHV-6 express the U94 gene, transcribed under IE conditions. Transcription of other IE genes (U16/17, U39, U42, U81, U89/90, U91) was not detected. To verify that U94 may play a role in the maintenance of the latent state, we derived lymphoid cell lines that stably expressed U94. HHV-6 was able to infect these cells, but viral replication was restricted. No cytopathic effect developed. Furthermore, viral transcripts were present in the first days postinfection and declined thereafter. A similar decline in the level of intracellular viral DNA also was observed. These findings are consistent with the hypothesis that the U94 gene product of HHV-6 regulates viral gene expression and enables the establishment and/or maintenance of latent infection in lymphoid cells.
Resumo:
The cellular aging-associated transcriptional repressor that we previously named as Orpheus was identical to Oct-1, a member of the POU domain family. Oct-1 represses the collagenase gene, one of the cellular aging-associated genes, by interacting with an AT-rich cis-element in the upstream of the gene in preimmortalized cells at earlier population-doubling levels and in immortalized cells. In these stages of cells, considerable fractions of the Oct-1 protein were prominently localized in the nuclear periphery and colocalized with lamin B. During the cellular aging process, however, this subspecies of Oct-1 disappeared from the nuclear periphery. The cells lacking the nuclear peripheral Oct-1 protein exhibited strong collagenase expression and carried typical senescent morphologies. Concomitantly, the binding activity and the amount of nuclear Oct-1 protein were reduced in the aging process and resumed after immortalization. However, the whole cellular amounts of Oct-1 protein were not significantly changed during either process. Thus, the cellular aging-associated genes including the collagenase gene seemed to be derepressed by the dissociation of Oct-1 protein from the nuclear peripheral structure. Oct-1 may form a transcriptional repressive apparatus by anchoring nuclear matrix attachment regions onto the nuclear lamina in the nuclear periphery.
Resumo:
Somatotopic maps in the cortex and the thalamus of adult monkeys and humans reorganize in response to altered inputs. After loss of the sensory afferents from the forelimb in monkeys because of transection of the dorsal columns of the spinal cord, therapeutic amputation of an arm or transection of the dorsal roots of the peripheral nerves, the deprived portions of the hand and arm representations in primary somatosensory cortex (area 3b), become responsive to inputs from the face and any remaining afferents from the arm. Cortical and subcortical mechanisms that underlie this reorganization are uncertain and appear to be manifold. Here we show that the face afferents from the trigeminal nucleus of the brainstem sprout and grow into the cuneate nucleus in adult monkeys after lesions of the dorsal columns of the spinal cord or therapeutic amputation of an arm. This growth may underlie the large-scale expansion of the face representation into the hand region of somatosensory cortex that follows such deafferentations.
Resumo:
Immunodeficiency typically appears many years after initial HIV infection. This long, essentially asymptomatic period contributes to the transmission of HIV in human populations. In rare instances, clearance of HIV-1 infection has been observed, particularly in infants. There are also reports of individuals who have been frequently exposed to HIV-1 but remain seronegative for the virus, and it has been hypothesized that these individuals are resistant to infection by HIV-1. However, little is known about the mechanism of immune clearance or protection against HIV-1 in these high-risk individuals because it is difficult to directly demonstrate in vivo protective immunity. Although most of these high-risk individuals show an HIV-1-specific cell-mediated immune response using in vitro assays, their peripheral blood lymphocytes (PBLs) are still susceptible to HIV infection in tissue culture. To study this further in vivo, we have established a humanized SCID mouse infection model whereby T-, B-, and natural killer-cell defective SCID/beige mice that have been reconstituted with normal human PBLs can be infected with HIV-1. When the SCID/beige mice were reconstituted with PBLs from two different multiply exposed HIV-1 seronegative individuals, the mice showed resistance to infection by two strains of HIV-1 (macrophage tropic and T cell tropic), although the same PBLs were easily infected in vitro. Mice reconstituted with PBLs from non-HIV-exposed controls were readily infected. When the same reconstituted mice were depleted of human CD8 T cells, however, they became susceptible to HIV-1 infection, indicating that the in vivo protection required CD8 T cells. This provides clear experimental evidence that some multiply exposed, HIV-1-negative individuals have in vivo protective immunity that is CD8 T cell-dependent. Understanding the mechanism of such protective immunity is critical to the design and testing of effective prophylactic vaccines and immunotherapeutic regimens.
Resumo:
Although Fas ligand (FasL) is well characterized for its capacity to deliver a death signal through its receptor Fas, recent work demonstrates that FasL also can receive signals facilitating antigen (Ag)-specific proliferation of CD8+ T cells. The fact that the gld mutation differentially influences the proliferative capacity of CD8+ and CD4+ T cells presented the intriguing possibility that a single molecule may play opposing roles in these two subpopulations. The present study focuses on how these positive and negative regulatory roles are balanced. We show that naive CD4+ T cells are responsive to FasL-mediated costimulation on encounter with Ag when Fas-mediated death is prevented. Thus, the machinery responsible for transducing the FasL positive reverse signal operates in both CD4+ and CD8+ T cells. Instead, differential control of FasL expression distinguishes the role of FasL in these two T cell subpopulations. FasL costimulation occurs immediately on T cell receptor ligation and correlates with the up-regulation of FasL expression on CD8+ and naive CD4+ T cells, both of which are sensitive to the FasL costimulatory signal. Conversely, FasL-initiated death occurs late in an immune response when high levels of FasL expression are maintained on CD4+ T cells that are sensitive to Fas-mediated death, but not on CD8+ T cells that are relatively insensitive to this signal. This careful orchestration of FasL expression during times of susceptibility to costimulation and conversely, to death, endows FasL with the capacity to both positively and negatively regulate the peripheral T cell compartment.
Resumo:
Targeted expression of foreign genes to the peripheral nervous system is interesting for many applications, including gene therapy of neuromuscular diseases, neuroanatomical studies, and elucidation of mechanisms of axonal flow. Here we describe a microneurosurgical technique for injection of replication-defective viral vectors into dorsal root ganglia (DRG). Adenovirus- and adeno-associated virus-based vectors with transcriptional competence for DRG neurons led to expression of the gene of interest throughout the first neuron of the sensory system, from the distal portions of the respective sensory nerve to the ipsilateral nucleus gracilis and cuneatus, which contains the synapses to the spinothalamic tracts. Use of Rag-1 ablated mice, which lack all B and T lymphocytes, allowed for sustained expression for periods exceeding 100 days. In immunocompetent mice, long-term (52 days) expression was achieved with similar efficiency by using adeno-associated viral vectors. DRG injection was vastly superior to intraneural injection into the sciatic nerve, which mainly transduced Schwann cells in the vicinity of the site of inoculation site but only inefficiently transduced nerve fibers, whereas i.m. injection did not lead to any significant expression of the reporter gene in nerve fibers. The versatile and efficient transduction of genes of interest should enable a wide variety of functional studies of peripheral nervous system pathophysiology.
Resumo:
Leptin acts as a potent inhibitory factor against obesity by regulating energy expenditure, food intake, and adiposity. The obese diabetic db/db mouse, which has defects in leptin receptor, displays enhanced neural responses and elevated behavioral preference to sweet stimuli. Here, we show the effects of leptin on the peripheral taste system. An administration of leptin into lean mice suppressed responses of peripheral taste nerves (chorda tympani and glossopharyngeal) to sweet substances (sucrose and saccharin) without affecting responses to sour, salty, and bitter substances. Whole-cell patch-clamp recordings of activities of taste receptor cells isolated from circumvallate papillae (innervated by the glossopharyngeal nerve) demonstrated that leptin activated outward K+ currents, which resulted in hyperpolarization of taste cells. The db/db mouse with impaired leptin receptors showed no such leptin suppression. Taste tissue (circumvallate papilla) of lean mice expressed leptin-receptor mRNA and some of the taste cells exhibited immunoreactivities to antibodies of the leptin receptor. Taken together, these observations suggest that the taste organ is a peripheral target for leptin, and that leptin may be a sweet-sensing modulator (suppressor) that may take part in regulation of food intake. Defects in this leptin suppression system in db/db mice may lead to their enhanced peripheral neural responses and enhanced behavioral preferences for sweet substances.
Resumo:
We have found suppressor T cells that inhibit the proliferative response of naive CD4+ T cells in T cell receptor (TCR) Vβ8.1 transgenic mice rendered tolerant in vivo by inoculation of Mls-1a-positive cells. This suppression was mediated by CD4+ T cells but not by CD8+ T cells or double-negative (DN) cells, and splenic CD4+ T cells from tolerant mice displayed a greater suppression than lymph node CD4+ T cells. Cell contact was required for efficient suppression, and known inhibitory cytokines such as IL-4, IL-10, and transforming growth factor β were not involved. Suppressor T cells inhibited IL-2 production by naive CD4+ T cells, and the addition of exogenous IL-2 diminished the suppressed activity while having little activity on tolerant T cells. Suppression was abolished by the elimination of CD25+ T cells in the tolerant CD4+ T cell subset. CD25+CD4+ T cells suppressed the proliferative response of the residual fraction of the nonanergic population, namely, 6C10+CD4+ T cells still present in the tolerant mice. However, 6C10−CD4+ T cells still had reduced reactivity to Mls-1a even after CD25+CD4+ T cells were removed and exogenous IL-2 was added. Suppressor cells appear to affect only residual nonanergic cells in situ, thereby facilitating the maintenance of the unresponsive state in vivo. These data provide a framework for understanding suppressor T cells and explain the difficulties and variables in defining their activity in other systems, because suppressor T cells apparently control only a small population of nonanergic cells in the periphery and may be viewed as a homeostatic mechanism.
Resumo:
We have reported a deficiency of a 91-kDa glycoprotein component of the phagocyte NADPH oxidase (gp91phox) in neutrophils, monocytes, and B lymphocytes of a patient with X chromosome-linked chronic granulomatous disease. Sequence analysis of his gp91phox gene revealed a single-base mutation (C → T) at position −53. Electrophoresis mobility-shift assays showed that both PU.1 and hematopoietic-associated factor 1 (HAF-1) bound to the inverted PU.1 consensus sequence centered at position −53 of the gp91phox promoter, and the mutation at position −53 strongly inhibited the binding of both factors. It was also indicated that a mutation at position −50 strongly inhibited PU.1 binding but hardly inhibited HAF-1 binding, and a mutation at position −56 had an opposite binding specificity for these factors. In transient expression assay using HEL cells, which express PU.1 and HAF-1, the mutations at positions −53 and −50 significantly reduced the gp91phox promoter activity; however, the mutation at position −56 did not affect the promoter activity. In transient cotransfection study, PU.1 dramatically activated the gp91phox promoter in Jurkat T cells, which originally contained HAF-1 but not PU.1. In addition, the single-base mutation (C → T) at position −52 that was identified in a patient with chronic granulomatous disease inhibited the binding of PU.1 to the promoter. We therefore conclude that PU.1 is an essential activator for the expression of gp91phox gene in human neutrophils, monocytes, and B lymphocytes.
Resumo:
We have studied the in vivo signaling mechanisms involved in nociceptin/orphanin FQ (Noci)-induced pain responses by using a flexor-reflex paradigm. Noci was 10,000 times more potent than substance P (SP) in eliciting flexor responses after intraplantar injection into the hind limb of mice, but the action of Noci seems to be mediated by SP. Mice pretreated with an NK1 tachykinin receptor antagonist or capsaicin, or mice with a targeted disruption of the tachykinin 1 gene no longer respond to Noci. The action of Noci appears to be mediated by the Noci receptor, a pertussis toxin-sensitive G protein–coupled receptor that stimulates inositol trisphosphate receptor and Ca2+ influx. These findings suggest that Noci indirectly stimulates nerve endings of nociceptive primary afferent neurons through a local SP release.
Resumo:
Disease resistance in plants is often controlled by a gene-for-gene mechanism in which avirulence (avr) gene products encoded by pathogens are specifically recognized, either directly or indirectly, by plant disease resistance (R) gene products. Members of the NBS-LRR class of R genes encode proteins containing a putative nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs). Generally, NBS-LRR proteins do not contain predicted transmembrane segments or signal peptides, suggesting they are soluble cytoplasmic proteins. RPM1 is an NBS-LRR protein from Arabidopsis thaliana that confers resistance to Pseudomonas syringae expressing either avrRpm1 or avrB. RPM1 protein was localized by using an epitope tag. In contrast to previous suggestions, RPM1 is a peripheral membrane protein that likely resides on the cytoplasmic face of the plasma membrane. Furthermore, RPM1 is degraded coincident with the onset of the hypersensitive response, suggesting a negative feedback loop controlling the extent of cell death and overall resistance response at the site of infection.
Resumo:
Objective: To evaluate the effect of heparin on duration of catheter patency and on prevention of complications associated with use of peripheral venous and arterial catheters.