935 resultados para Natural protected environment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of land use are usually present in the areas adjacent to many shallow karst cavities. Over time, the increasing amount of potentially harmful matter and energy, of mainly anthropic origin or influence, that reaches the interior of a shallow karst cavity can modify the hypogeal ecosystem and increase the risk of damage to the Palaeolithic rock art often preserved within the cavity. This study proposes a new Protected Area status based on the geological processes that control these matter and energy fluxes into the Altamira cave karst system. Analysis of the geological characteristics of the shallow karst system shows that direct and lateral infiltration, internal water circulation, ventilation, gas exchange and transmission of vibrations are the processes that control these matter and energy fluxes into the cave. This study applies a comprehensive methodological approach based on Geographic Information Systems (GIS) to establish the area of influence of each transfer process. The stratigraphic and structural characteristics of the interior of the cave were determined using 3D Laser Scanning topography combined with classical field work, data gathering, cartography and a porosity–permeability analysis of host rock samples. As a result, it was possible to determine the hydrogeological behavior of the cave. In addition, by mapping and modeling the surface parameters it was possible to identify the main features restricting hydrological behavior and hence direct and lateral infiltration into the cave. These surface parameters included the shape of the drainage network and a geomorphological and structural characterization via digital terrain models. Geological and geomorphological maps and models integrated into the GIS environment defined the areas involved in gas exchange and ventilation processes. Likewise, areas that could potentially transmit vibrations directly into the cave were identified. This study shows that it is possible to define a Protected Area by quantifying the area of influence related to each transfer process. The combined maximum area of influence of all the processes will result in the new Protected Area. This area will thus encompass all the processes that account for most of the matter and energy carried into the cave and will fulfill the criteria used to define the Protected Area. This methodology is based on the spatial quantification of processes and entities of geological origin and can therefore be applied to any shallow karst system that requires protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim of study. Orchidaceae has the largest number of species of any family in the plant kingdom. This family is subject to a high risk of extinction in natural environments, such as natural parks and protected areas. Recent studies have shown the prevalence of many species of orchids to be linked to fungal soil diversity, due to their myco-heterotrophic behaviour. Plant communities determine fungal soil diversity, and both generate optimal conditions for orchid development. Area of study. The work was carried out in n the two most important natural parks in Alicante (Font Roja and Sierra Mariola), in South-eastern of Spain. Material and Methods. We designed a molecular tool to monitor the presence of Russula spp. in soil and orchids roots, combined with phytosociological methods. Main results. Using a PCR-based method, we detected the presence in the soil and Limodorum abortivum orchid roots of the mycorrhizal fungi Russula spp. The species with highest coverage was Quercus rotundifolia in areas where the orchid was present. Research highlights. We present a useful tool based on PCR to detect the presence of Russula spp. in a natural environment. These results are consistent with those obtained in different studies that linked the presence of the mycorrhizal fungi Russula spp. in roots of the species Limodorum and the interaction between these fungal species and Quercus ilex trees in Mediterranean forest environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since ancient times, Alicante has been considered a strategic location on the east coast of Spain. Situated close to the sea, it is protected to the southeast by the Cape of Huerta and to the southwest by the Cape of Santa Pola. The city lies at the foot of Mount Benacantil, a high outcrop which has been the site of defensive buildings since time immemorial due to its naturally strong position: it was undoubtedly one of the strongest natural sites in the Levant. Its summit, lying 160 metres above the sea, is topped by a series of fortified enclosures now known as Santa Barbara Castle. This paper briefly describes the alterations made to the castle fortifications from its origins through the Renaissance, including the Muslim and Christian periods until the late fifteenth century and subsequent alterations to adapt new bastioned fortification techniques, and depicts the status of the fortress in each period. This paper is the result of doctoral research carried out at different national and international archives and leading to a thesis presented in 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"PB-231 711."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliographical references (p. 83-84)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"February 1983."

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Walk between Natural Science and Old Haven Hall

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Albert Kahn, architect. Built 1936.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Albert Kahn, architect. Irwin & Leighton, contractors. Construction 1914-1915. Building named for Edward H. Kraus. On image: Schmidt photo - 14