895 resultados para Nano partículas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : Natural materials have received a full attention in many applications because they are degradable and derived directly from earth. In addition to these benefits, natural materials can be obtained from renewable resources such as plants (i.e. cellulosic fibers like flax, hemp, jute, and etc). Being cheap and light in weight, the cellulosic natural fiber is a good candidate for reinforcing bio-based polymer composites. However, the hydrophilic nature -resulted from the presence of hydroxyl groups in the structure of these fibers- restricts the application of these fibers in the polymeric matrices. This is because of weak interfacial adhesion, and difficulties in mixing due to poor wettability of the fibers within the matrices. Many attempts have been done to modify surface properties of natural fibers including physical, chemical, and physico-chemical treatments but on the one hand, these treatments are unable to cure the intrinsic defects of the surface of the fibers and on the other hand they cannot improve moisture, and alkali resistance of the fibers. However, the creation of a thin film on the fibers would achieve the mentioned objectives. This study aims firstly to functionalize the flax fibers by using selective oxidation of hydroxyl groups existed in cellulose structure to pave the way for better adhesion of subsequent amphiphilic TiO[subscript 2] thin films created by Sol-Gel technique. This method is capable of creating a very thin layer of metallic oxide on a substrate. In the next step, the effect of oxidation on the interfacial adhesion between the TiO[subscript 2] film and the fiber and thus on the physical and mechanical properties of the fiber was characterized. Eventually, the TiO[subscript 2] grafted fibers with and without oxidation were used to reinforce poly lactic acid (PLA). Tensile, impact, and short beam shear tests were performed to characterize the mechanical properties while Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic mechanical analysis (DMA), and moisture absorption were used to show the physical properties of the composites. Results showed a significant increase in physical and mechanical properties of flax fibers when the fibers were oxidized prior to TiO[subscript 2] grafting. Moreover, the TiO[subscript 2] grafted oxidized fiber caused significant changes when they were used as reinforcements in PLA. A higher interfacial strength and less amount of water absorption were obtained in comparison with the reference samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A produção de peptídeos bioativos de distintas fontes de proteínas vem ganhando espaço na produção científica e tecnológica, despertando interesse do setor empresarial. Paralelamente a isso, devido à elevada concentração de proteínas na biomassa das microalgas Spirulina e Chlorella, estas apresentam grande potencial para a extração de biocompostos com alto valor agregado, como biopeptídeos de microalgas. As proteínas são uma importante fonte de peptídeos bioativos, mas estes não estão ativos na proteína precursora e devem ser liberados para que apresentem efeitos fisiológicos desejados. Essa liberação pode ser feita através de hidrólise enzimática a partir de proteases, sendo um dos métodos mais utilizados para a produção destes biocompostos. Dentro deste contexto, vários estudos vêm mostrando o uso da tecnologia por secagem em spray dryer para a obtenção de nanopartículas que contenham compostos bioativos, sendo, essa técnica, amplamente utilizada para transformar líquidos em pós, podendo ser aplicada em materiais sensíveis à temperatura. Este estudo teve como objetivo obter peptídeos bioativos através da reação enzimática, tendo como substrato a biomassa de Spirulina sp. LEB 18 e Chlorella pyrenoidosa e, na sequência, obter nanopartículas contendo os biopeptídeos. Primeiramente, foram testadas as 3 proteases comerciais (Protemax 580 L, Protemax N 200 e pepsina) para a produção de hidrolisados proteicos de microalgas, para isso foram realizados 3 delineamentos compostos centrais para cada microalga em estudo (Chlorella e Spirulina). Os delineamentos utilizados foram do tipo 23 com três repetições no ponto central, variando-se a concentração de enzima (5 a 10 U.mL-1), a concentração de substrato (5 a 10 %) e o tempo de reação (60 a 240 min). Após, realizou-se 2 delineamentos compostos rotacionais do tipo 22 com pontos centrais, um para cada microalga, utilizando-se para a hidrólise a enzima Protemax 580L (5 U.mL-1) variando-se a concentração de substrato e tempo de reação, para todos ensaios estudou-se a solubilidade, capacidade de retenção de água, atividade antioxidante e digestibilidade. Foi selecionado um ensaio para cada microalga, levando em conta os melhores resultados. Então nova hidrólise enzimática foi realizada sendo o sistema reacional composto pela enzima Protemax 580 L (5 U.mL-1) e pela biomassa de Spirulina sp. LEB 18 ou Chlorella pyrenoidosa (4% de proteína) durante tempo de 200 min. Os hidrolisados foram purificados por filtração a vácuo com membranas millipores de diferentes tamanhos (0,45; 0,2 e 0,1 µm) e por colunas com membrana vertical Amicon® Ultra 0.5 (3K e 10K), sendo que após cada etapa, foi realizado teste de atividade antioxidante pelos métodos de poder redutor, DPPH e ABTS, a fim de verificar a permanência da atividade antioxidante. Utilizou-se nano spray dryer Büchi modelo B 90 para a secagem das amostras, sendo o tamanho das partículas obtidas analisados por microscopia eletrônica de varredura (MEV). Por fim, conclui-se que a biomassa de microalgas pode ser utilizada como fonte de produção de peptídeos bioativos com elevada atividade antioxidante e que dentre as microalgas estudadas, Spirulina sp. LEB 18 apresentou melhores resultados, em todas as análises realizadas, quando comparada com Chlorella pyrenoidosa. Esse estudo, também visou utilizar a nanobiotecnologia para obtenção de nanoparículas contendo os biopeptídeos, para tal, utilizou-se o nano Buchi Spray Dryer B-90, o qual gerou partículas nanométricas de 14 a 18 nm para o hidrolisado de Spirulina e de 72 a 108 nm para o hidrolisado de Chlorella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A oportunidade de produção de biomassa microalgal tem despertado interesse pelos diversos destinos que a mesma pode ter, seja na produção de bioenergia, como fonte de alimento ou servindo como produto da biofixação de dióxido de carbono. Em geral, a produção em larga escala de cianobactérias e microalgas é feita com acompanhamento através de análises físicoquímicas offline. Neste contexto, o objetivo deste trabalho foi monitorar a concentração celular em fotobiorreator raceway para produção de biomassa microalgal usando técnicas de aquisição digital de dados e controle de processos, pela aquisição de dados inline de iluminância, concentração de biomassa, temperatura e pH. Para tal fim foi necessário construir sensor baseado em software capaz de determinar a concentração de biomassa microalgal a partir de medidas ópticas de intensidade de radiação monocromática espalhada e desenvolver modelo matemático para a produção da biomassa microalgal no microcontrolador, utilizando algoritmo de computação natural no ajuste do modelo. Foi projetado, construído e testado durante cultivos de Spirulina sp. LEB 18, em escala piloto outdoor, um sistema autônomo de registro de informações advindas do cultivo. Foi testado um sensor de concentração de biomassa baseado na medição da radiação passante. Em uma segunda etapa foi concebido, construído e testado um sensor óptico de concentração de biomassa de Spirulina sp. LEB 18 baseado na medição da intensidade da radiação que sofre espalhamento pela suspensão da cianobactéria, em experimento no laboratório, sob condições controladas de luminosidade, temperatura e fluxo de suspensão de biomassa. A partir das medidas de espalhamento da radiação luminosa, foi construído um sistema de inferência neurofuzzy, que serve como um sensor por software da concentração de biomassa em cultivo. Por fim, a partir das concentrações de biomassa de cultivo, ao longo do tempo, foi prospectado o uso da plataforma Arduino na modelagem empírica da cinética de crescimento, usando a Equação de Verhulst. As medidas realizadas no sensor óptico baseado na medida da intensidade da radiação monocromática passante através da suspensão, usado em condições outdoor, apresentaram baixa correlação entre a concentração de biomassa e a radiação, mesmo para concentrações abaixo de 0,6 g/L. Quando da investigação do espalhamento óptico pela suspensão do cultivo, para os ângulos de 45º e 90º a radiação monocromática em 530 nm apresentou um comportamento linear crescente com a concentração, apresentando coeficiente de determinação, nos dois casos, 0,95. Foi possível construir um sensor de concentração de biomassa baseado em software, usando as informações combinadas de intensidade de radiação espalhada nos ângulos de 45º e 135º com coeficiente de determinação de 0,99. É factível realizar simultaneamente a determinação inline de variáveis do processo de cultivo de Spirulina e a modelagem cinética empírica do crescimento do micro-organismo através da equação de Verhulst, em microcontrolador Arduino.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decades the growing application of nanomaterials (NMs) in diverse consumer products has raised various concerns in the field of toxicology. They have been extensively used in a broad range of applications and cover most of the industrial sectors as well as the medicine and the environmental areas. The most common scenarios for human exposure to NMs are occupational, environmental and as consumers and inhalation is the most frequent route of exposure, especially in occupational settings. Cerium dioxide NMs (nano-CeO2) are widely used in a number of applications such as in cosmetics, outdoor paints, wood care products as well as fuel catalysts. For such reason, nano-CeO2 is one of the selected NMs for priority testing within the sponsorship program of the Working Party of Manufactured Nanomaterials of the OECD. In this context, the aim of this study is to assess the safety of nano-CeO2 (NM-212, Joint Research Center Repository) through the characterization of its cytotoxicity and genotoxicity in a human alveolar epithelial cell line. A dispersion of the NM in water plus 0.05% BSA was prepared and sonicated during 16 minutes, according to a standardized protocol. DLS analysis was used to characterize the quality of the NM dispersion in the culture medium. To evaluate the cytotoxicity of nano-CeO2 in the A549 cell line, the colorimetric MTT assay was performed; the capacity of cells to proliferate when exposed to CeO2 was also assessed with the Clonogenic assay. The genotoxicity of this NM was evaluated by the Comet Assay (3 and 24h of exposure) to quantify DNA breaks and the FPG-modified comet assay to assess oxidative DNA damage. The Cytokinesis-Block Micronucleus (CBMN) assay was used to further detect chromosome breaks or loss. The nano-CeO2 particles are spherical, displaying a diameter of 33 nm and 28 m2/g of surface area. The results of the MTT assay did not show any decreased in cells viability following treatment with a dose-range of nano-CeO2 during 24h. Nevertheless, the highest concentrations of this NM were able to significantly reduce the colony forming ability of A549 cells, suggesting that a prolonged exposure may be cytotoxic to these cells. Data from both genotoxicity assays revealed that nano-CeO2 was neither able to induce DNA breaks nor oxidative DNA damage. Likewise, no significant micronucleus induction was observed. Taken together, the present results indicate that this nano-CeO2 is not genotoxic in this alveolar cell line under the tested conditions, although further studies should be performed, e.g., gene mutation in somatic cells and in vivo chromosome damage (rodent micronucleus assay) to ensure its safety to human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grey and white carbonate mylonites were collected along thrust planes of the Helvetic Alps. They are characterised by very small grain sizes and non-random grain shape (SPO) and crystallographic preferred orientation (CPO). Presumably they deformed in the field of grain size sensitive flow by recrystallisation accommodated intracrystalline deformation in combination with granular flow. Both mylonites show a similar mean grain size, but in the grey mylonites the grain size range is larger, the grain shapes are more elongate and the dynamically recrystallised calcite grains are more often twinned. Grey mylonites have an oblique CPO, while the CPO in white mylonites is symmetric with respect to the shear plane. Combustion analysis and TEM investigations revealed that grey mylonites contain a higher amount of highly structured kerogens with particle sizes of a few tens of nanometers, which are finely dispersed at the grain boundaries. During deformation of the rock, nano-scale particles reduced the migration velocity of grain boundaries by Zener drag resulting in slower recrystallisation rates of the calcite aggregate. In the grey mylonites, more strain increments were accommodated by individual grains before they became refreshed by dynamic recrystallisation than in white mylonites, where grain boundary migration was less hindered and recrystallisation cycles were faster. Consequently, grey mylonites represent ‘deformation’ microfabrics while white mylonites are characterised by ‘recrystallisation’ microfabrics. Field geologists must utilise this different deformation behavior when applying the obliquity in CPO and SPO of the respective mylonites as reliable shear sense indicators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of graphitic compounds such as carbon nanotubes (CNTs) and graphene into nano-electronic device packaging holds much promise for waste heat management given their high thermal conductivities. However, as these graphitic materials must be used in together with other semiconductor/insulator materials, it is not known how thermal transport is affected by the interaction. Using different simulation techniques, in this thesis, we evaluate the thermal transport properties - thermal boundary conductance (TBC) and thermal conductivity - of CNTs and single-layer graphene in contact with an amorphous SiO2 (a-SiO2) substrate. First, the theoretical methodologies and concepts used in our simulations are presented. In particular, two concepts are described in detail as they are necessary for the understanding of the subsequent chapters. The first is the linear response Green-Kubo (GK) theory of thermal boundary conductance (TBC), which we develop in this thesis, and the second is the spectral energy density method, which we use to directly compute the phonon lifetimes and thermal transport coefficients. After we set the conceptual foundations, the TBC of the CNT-SiO2 interface is computed using non- equilibrium molecular dynamics (MD) simulations and the new Green-Kubo method that we have developed. Its dependence on temperature, the strength of the interaction with the substrate, and tube diameter are evaluated. To gain further insight into the phonon dynamics in supported CNTs, the scattering rates are computed using the spectral energy density (SED) method. With this method, we are able to distinguish the different scattering mechanisms (boundary and CNT-substrate phonon-phonon) and rates. The phonon lifetimes in supported CNTs are found to be reduced by contact with the substrate and we use that lifetime reduction to determine the change in CNT thermal conductivity. Next, we examine thermal transport in graphene supported on SiO2. The phonon contribution to the TBC of the graphene-SiO2 interface is computed from MD simulations and found to agree well with experimentally measured values. We derive the theory of remote phonon scattering of graphene electrons and compute the heat transfer coefficient dependence on doping level and temperature. The thermal boundary conductance from remote phonon scattering is found to be an order of magnitude smaller than that of the phonon contribution. The in-plane thermal conductivity of supported graphene is calculated from MD simulations. The experimentally measured order of magnitude reduction in thermal conductivity is reproduced in our simulations. We show that this reduction is due to the damping of the flexural (ZA) modes. By varying the interaction between graphene and the substrate, the ZA modes hybridize with the substrate Rayleigh modes and the dispersion of the hybridized modes is found to linearize in the strong coupling limit, leading to an increased thermal conductance in the composite structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research work, a new routing protocol for Opportunistic Networks is presented. The proposed protocol is called PSONET (PSO for Opportunistic Networks) since the proposal uses a hybrid system composed of a Particle Swarm Optimization algorithm (PSO). The main motivation for using the PSO is to take advantage of its search based on individuals and their learning adaptation. The PSONET uses the Particle Swarm Optimization technique to drive the network traffic through of a good subset of forwarders messages. The PSONET analyzes network communication conditions, detecting whether each node has sparse or dense connections and thus make better decisions about routing messages. The PSONET protocol is compared with the Epidemic and PROPHET protocols in three different scenarios of mobility: a mobility model based in activities, which simulates the everyday life of people in their work activities, leisure and rest; a mobility model based on a community of people, which simulates a group of people in their communities, which eventually will contact other people who may or may not be part of your community, to exchange information; and a random mobility pattern, which simulates a scenario divided into communities where people choose a destination at random, and based on the restriction map, move to this destination using the shortest path. The simulation results, obtained through The ONE simulator, show that in scenarios where the mobility model based on a community of people and also where the mobility model is random, the PSONET protocol achieves a higher messages delivery rate and a lower replication messages compared with the Epidemic and PROPHET protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho foi avaliado o processo de recobrimento de partículas de areia com quitosana utilizando a técnica dip-coating, e analisado o emprego destas partículas como recheio de uma coluna de leito fixo no processo de adsorção de cromo (VI) em solução aquosa. A quitosana foi obtida a partir de resíduos de camarão e caracterizada. O estudo avaliou a influência do tamanho das partículas e da concentração da solução de quitosana no recobrimento das partículas de areia. Foram avaliados parâmetros termodinâmicos, isotermas de equilíbrio e parâmetros relacionados ao funcionamento do leito (vazão e pH da solução, diâmetro de partícula) para o processo de adsorção de cromo (VI) em solução aquosa. No recobrimento das partículas de areia, o tamanho não teve significância na resposta, enquanto a concentração da solução de recobrimento mostrou ter grande influência sobre o resultado, sendo que a menor concentração de quitosana dentro da faixa estudada (0,5% p/v) apresentou o melhor desempenho. O processo de cura física para o recobrimento das partículas de areia mostrou melhor desempenho para a adsorção de cromo (VI) em leito fixo frente ao processo físico-químico. As análises de superfície (MEV) e de difração de raio-X (EDX) comprovaram a mudança na superfície das partículas recobertas e a presença de cromo após a adsorção. O modelo de Sips foi o que melhor representou os dados experimentais de equilíbrio, com R2 >0,99% e EMR<3,5%, sendo que a capacidade máxima de adsorção foi de 46,93 mg g-1 obtida a 298 K. O processo se mostrou espontâneo, exotérmico e favorável, com valores de -4,49 a -4,66kJ mol-1 para e energia livre de Gibbs, -5,97kJ mol-1 para a variação de entalpia e -5,17x10-3 kJ mol-1K -1 para variação de entropia. O aumento do pH diminuiu a adsorção de cromo (VI), sendo que a melhor resposta foi obtida em pH 3, sendo que o diâmetro de partícula não teve efeito significante. O estudo da vazão da solução de cromo (VI) no desempenho do leito mostrou que no menor valor (2,5 mL min-1 ) a concentração de saída do leito foi próxima a zero, mantendo-se com concentrações de saída abaixo de 20% por pelo menos 20 min. O estudo da dessorção do leito mostrou que após cinco ciclos de trabalho o leito manteve 86% da capacidade de adsorção, com taxas de recuperação do cromo no processo de dessorção maiores que 95%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postharvest treatments with nano-silver (NS) alleviate bacteria-related stem blockage of some cut flowers to extend their longevity. Gladiolus (Gladiolus hybridus) is a commercially important cut flower species. For the first time, the effects of NS pulses on cut gladiolus ‘Eerde’ spikes were investigated towards reducing bacterial colonization of and biofilm formation on their stems. As compared with a deionized water (DIW) control, pulse treatments with NS at 10, 25 and 50 mg L−1 for 24 h significantly (P ≤ 0.05) prolonged the vase life of cut gladiolus spikes moved into vases containing DIW. The NS treatments enhanced floret ‘opening rate’ and ‘daily ornamental value’. Although there were no significant differences among NS treatments, a 25 mg L−1 NS pulse treatment tended to give the longest vase life and the best ‘display quality’. All NS pulse treatments significantly improved water uptake by and reduced water loss from flowering spikes, thereby delaying the loss of water balance and maintaining relative fresh weight. Fifty (50) mg L−1 NS pulse-treated cut gladiolus spikes tended to exhibit the most water uptake and highest water balance over the vase period. However, there was no significant difference between 25 and 50 mg L−1 NS pulse treatments. Observations of stem-end bacterial proliferation during the vase period on cut gladiolus spikes either with or without NS pulse treatments were performed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). As compared to the control treatment, they revealed that the 25 mg L−1 NS pulse treatment effectively inhibited bacterial colonization and biofilm formation on the stem-end cut surface and in the xylem vessels, respectively. In vitro culture of the bacterial microflora and analysis of biofilm architecture using CLSM revealed that NS treatment restricted bacterial biofilm formation. After static culture for 24 h at 35 °C with 25 mg L−1 NS in the medium, no biofilm form or structure was evident. Rather, only limited bacterial cell number and scanty extracellular polysaccharide (EPS) material were observed. In contrast, mature bacterial biofilm architecture comprised of abundant bacteria interwoven with EPS formed in the absence of NS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinity gradient power (SGP) is the energy that can be obtained from the mixing entropy of two solutions with a different salt concentration. River estuary, as a place for mixing salt water and fresh water, has a huge potential of this renewable energy. In this study, this potential in the estuaries of rivers leading to the Persian Gulf and the factors affecting it are analysis and assessment. Since most of the full water rivers are in the Asia, this continent with the potential power of 338GW is a second major source of energy from the salinity gradient power in the world (Wetsus institute, 2009). Persian Gulf, with the proper salinity gradient in its river estuaries, has Particular importance for extraction of this energy. Considering the total river flow into the Persian Gulf, which is approximately equal to 3486 m3/s, the amount of theoretical extractable power from salinity gradient in this region is 5.2GW. Iran, with its numerous rivers along the coast of the Persian Gulf, has a great share of this energy source. For example, with study calculations done on data from three hydrometery stations located on the Arvand River, Khorramshahr Station with releasing 1.91M/ energy which is obtained by combining 1.26m3 river water with 0.74 m3 sea water, is devoted to itself extracting the maximum amount of extractable energy. Considering the average of annual discharge of Arvand River in Khorramshahr hydrometery station, the amount of theoretical extractable power is 955 MW. Another part of parameters that are studied in this research, are the intrusion length of salt water and its flushing time in the estuary that have a significant influence on the salinity gradient power. According to the calculation done in conditions HWS and the average discharge of rivers, the maximum of salinity intrusion length in to the estuary of the river by 41km is related to Arvand River and the lowest with 8km is for Helle River. Also the highest rate of salt water flushing time in the estuary with 9.8 days is related to the Arvand River and the lowest with 3.3 days is for Helle River. Influence of these two parameters on reduces the amount of extractable energy from salinity gradient power as well as can be seen in the estuaries of the rivers studied. For example, at the estuary of the Arvand River in the interval 8.9 days, salinity gradient power decreases 9.2%. But another part of this research focuses on the design of a suitable system for extracting electrical energy from the salinity gradient. So far, five methods have been proposed to convert this energy to electricity that among them, reverse electro-dialysis (RED) method and pressure-retarded osmosis (PRO) method have special importance in practical terms. In theory both techniques generate the same amount of energy from given volumes of sea and river water with specified salinity; in practice the RED technique seems to be more attractive for power generation using sea water and river water. Because it is less necessity of salinity gradient to PRO method. In addition to this, in RED method, it does not need to use turbine to change energy and the electricity generation is started when two solutions are mixed. In this research, the power density and the efficiency of generated energy was assessment by designing a physical method. The physical designed model is an unicellular reverse electro-dialysis battery with nano heterogenic membrane has 20cmx20cm dimension, which produced power density 0.58 W/m2 by using river water (1 g NaCl/lit) and sea water (30 g NaCl/lit) in laboratorial condition. This value was obtained because of nano method used on the membrane of this system and suitable design of the cell which led to increase the yield of the system efficiency 11% more than non nano ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan is a natural polymer obtained by deacetylation of chitin. After cellulose chitin is the second most abundant polysaccharide in nature. It is biologically safe, non-toxic, biocompatible and biodegradable polysaccharide. Chitosan loaded with zinc oxide nanoparticles have gained more attention bio sorbent because of their better stability, low toxicity, simple and mild preparation method and high sorption capacity. Chitosan loaded with zinc oxide nanoparticles have been prepared of chitosan. The physicochemical properties of nanoparticles were characterized by Fourier Transform Infrared (FTIR), Scanning Electron Microscope (SEM) Analysis. Its sorption capacity for lead and cadmium ions studied. Factors such as initial concentration of lead ions, cadmium ions sorbent amount, contact time, pH and temperature were investigated. It is found that chitosan loaded with zinc oxide nanoparticles could sorb lead and cadmium ions effectively, this sorption rate was affected significantly by initial concentration of lead and cadmium ions, sorbent amount, contact time, pH of solution. The maximum of percentage of lead sorption was 98 % with initial concentration 3 mg/l and sorbent amount 0.05 g, pH 11 in 45 min and cadmiumwas90 %with initial concentration 3mg/l and sorbent amount 0.05 g, pH 11 in45 min. Consequently chitosan loaded with zinc oxide nanoparticles demonstrated greater fixation ability for lead ions than cadmium ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing the amount of detergent industries in world in spite of having abundant benefits; entering a new kind of contamination into environment and attract the attention of environment liable of different countries to itself. Entering detergents into an aqueous solution cause pollution of water sources and environment in respect of appearing e problem and charges like: nutritive phenomenon, decomposition of hard group of detergent and producing foam. After using Detergents, they were poured into rivers, seas and lakes and have destructive effect on environment. A lot of hygiene problems were attributed to the water having detergents more than allowed value. So, it is specified the importance of eliminating detergents from contaminated water and it is application for secondary use. In order to attain to this aim, we can use inorganic nano and micro-caolin. In this study the adsorptive properties of detergent on the micro and nano caolin adsorbents were studied and the effect of various parameters like the amount of adsorptive materials, initial concentration of detergent, speed of stirring, electrolyte, temperature, time and pH were determined. The surface area of micro- and nano-caoline was reported 11.867 and 49.1438 m2 g-1, respectively. That increasing in nano-caoline surface area confirms increasing in capacity and more rate of adsorption. The results gained by this research recommend using micro- and nano-caolin as a plentiful, available and effective adsorbents. Also in comparison, using nano-caoline was recommended in order to have more effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure Water, is a crucial demand of creature life. Following industrial development, extra amount of toxic metals such as chromium enters the environmental cycle through the sewage, which is considered as a serious threat for organisms. One of the modern methods of filtration and removal of contaminants in water, is applying Nano-technology. According to specific property of silicate materials, in this article we try to survey increased power in composites and various absorption in several morphologies and also synthesis of Nano-metal silicates with different morphologies as absorbent of metal toxic ions. At first, we synthesize nano zink silicate with three morphologies considering context and the purpose of this survey. 1) Nano synthesis of zink silicate hollow cavity by hydrothermal method in mixed solvent system of ethanol/glycol polyethylene. 2) Zink nano wires silicate in a water-based system by controlling the amount of sodium silicate. 3) Synthesis of nano zink silicate membrane. After synthesizing, we measured the cadmium ion absorbance by synthesized nano zink silicates. Controlling PH, is the applied absorption method. Next step, we synthesized nano zink-magnesium silicate composite in two various morphologies of nanowires and membrane by different precent of zink and magnesium, in order to optimize synthesized nano metal silicate. We used zink nitrate and magnesium nitrate and also measured cadmium absorption by synthesized nano metal silicates in the same way of PH control absorption. In the 3rd step, in order to determine the impact of the type of metal in nano metal silicate, we synthesized nano magnesium silicate and compared its absorption with nano zink silicate. Furthermore, we calculated the optimal concentration in one of synthesizes. Optimal concentration is the process which has the maximum absorption. While applying two methods of absorption in the test, finally we compared the effect of absorption method on the absorption level. Below you find further steps of synthesis: 1) Using IR, RAMAN, XRD spectroscopy to check the accuracy of synthesis. 2) Checking the dispersion of nano particles in ethanol solution by light microscope. 3) Measuring and observing particles with scanning electron microscope (SEM). 4) Using atomic absorption device for measuring the cadmium concentration in water-based solutions. The nano metal silicates were synthesized successfully. All of synthesized nano absorbents have the cadmium ion absorbency. The cadmium absorption via nano absorbents depend on various factors such as kind of metal in nano silicate and percent of metal in nano metal silicate composite. Meanwhile the absorption and PH control of medium containing the absorbent and solution would affect the cadmium absorption.