959 resultados para NORMAL STATE PROPERTIES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relativistic heavy ion collisions are the ideal experimental tool to explore the QCD phase diagram. Several results show that a very hot medium with a high energy density and partonic degrees of freedom is formed in these collisions, creating a new state of matter. Measurements of strange hadrons can bring important information about the bulk properties of such matter. The elliptic flow of strange hadrons such as phi, K(S)(0), Lambda, Xi and Omega shows that collectivity is developed at partonic level and at intermediate p(T) the quark coalescence is the dominant mechanism of hadronization. The nuclear modification factor is an another indicator of the presence of a very dense medium. The comparison between measurements of Au+Au and d+Au collisions, where only cold nuclear matter effects are expected, can shed more light on the bulk properties. In these proceedings, recent results from the STAR experiment on bulk matter properties are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the results of ab initio electronic and optical calculations for pure socialite crystal using the linear augmented plane wave (LAPW) method within density functional theory (DFT). The calculated electronic structure revealed predominantly orbital characters of the valence band and the conduction band, and enabled us to determine the type and the value of the fundamental gap of the compound. The imaginary part of the dielectric tensor, extinction coefficient and refraction index were calculated as functions of the incident radiation wavelength. It is shown that the O 2p states and Na 3s states play the major role in optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 40 and 250 nm. Furthermore, we concluded that the material does not absorb radiation in the visible range. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural, magnetic and hyperfine interaction measurements have been carried out on the novel compound La(3.5)Ru(4)O(13) prepared under two different atmospheres (air and oxygen flow). This compound is formed in the orthorhombic structure (space group Pmmm, # 47). The coexistence of the triple-layered perovskite-type planes (quasi-2D structure) and the rutile-like slabs (1D structure) leads to interesting magnetic and electronic properties in this compound. The magnetic susceptibility of this system shows a peak at T similar to 47 K associated with antiferromagnetic interactions. The Curie-Weiss behaviour of the susceptibility provides an effective magnetic moment consistent with Ru ions in low-spin state. Perturbed angular correlation measurements carried out with (111)Cd probe in the temperature range 10-60 K reveal only quadrupole interactions and indicate the occurrence of structural distortions for T<40K. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature dependence of the crystalline structure and the lattice parameters of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric ceramic system with 0.00 x 0.21 was determined. The samples with x 0.11 show a cubic-to-tetragonal phase transition at the maximum dielectric permittivity, Tmax. Above this amount and especially for the x = 0.12 sample, a spontaneous phase transition from a relaxor ferroelectric state (cubic phase) to a ferroelectric state (tetragonal phase) is observed upon cooling below the Tmax. Unlike what has been reported in other studies, the x = 0.13, 0.14, and 0.15 samples, which present a more pronounced relaxor behavior, also presents a spontaneous normal-to-relaxor transition, indicated by a cubic to tetragonal symmetry below the Tmax. The origin of this anomaly has been associated with an increase in the degree of tetragonality, confirmed by the measurements of the X-ray diffraction patterns. The differential thermal analysis (DSC) measurements also confirm the existence of these phase transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyaniline is a conducting polymer with appealing electrical and optical properties, arising from the -conjugation along the polymer backbone. The understanding of its excited state absorption is of prime importance for designing and fabricating optical devices. Here, we report on the study of the excited state absorption of doped and undoped PANI by using femtosecond pulses in the spectral range from 450nm up to 850nm. For undoped PANI, we observed saturation of absorption as well as reverse saturable absorption, depending on the excitation wavelength. For doped PANI, however, only saturable absorption was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The (micro)structural and electrical properties of undoped and Er(3+)-doped BaTi(0.85)Zr(0.15)O(3) ceramics were studied in this work for both nominal Ba(2+) and Ti(4+) substitution formulations. The ceramics were produced from solid-state reaction and sintered at 1400 degrees C for 3 h. For those materials prepared following the donor-type nominal Ba(1-x)Er(x)(Ti(0.85)Zr(0.15))O(3) composition, especially, Er(3+) however showed a preferential substitution for the (Ti,Zr)(4+) lattice sites. This allowed synthesis of a finally acceptor-like, highly resistive Ba(Ti,Zr,Er)O(3-delta)-like system, with a solubility limit below but close to 3 cat.% Er(3+). The overall phase development is discussed in terms of the amphoteric nature of Er(3+), and appears to mainly or, at least, partially also involve a minimization of stress effects from the ion size mismatch between the dopant and host cations. Further results presented here include a comparative analysis of the behavior of the materials` grain size, electrical properties and nature of the ferroelectric-to-paraelectric phase transition upon variation of the formulation and Er(3+) content. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bose systems, subject to the action of external random potentials, are considered. For describing the system properties, under the action of spatially random potentials of arbitrary strength, the stochastic mean-field approximation is employed. When the strength of disorder increases, the extended Bose-Einstein condensate fragments into spatially disconnected regions, forming a granular condensate. Increasing the strength of disorder even more transforms the granular condensate into the normal glass. The influence of time-dependent external potentials is also discussed. Fastly varying temporal potentials, to some extent, imitate the action of spatially random potentials. In particular, strong time-alternating potential can induce the appearance of a nonequilibrium granular condensate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bi(4-x)La(x)Ti(3)O(12) (BLT) ceramics were prepared and studied in this work in terms of La(3+)-modified microstructure and phase development as well as electrical response. According to the results processed from X-ray diffraction and electrical measurements, the solubility limit (XL) of La(3+) into the Bi(4)Ti(3)O(12) (BIT) matrix was here found to locate slightly above x = 1.5. Further, La(3+) had the effect of reducing the material grain size, while changing its morphology from the plate-like form, typical of BIT ceramics, to a spherical-like one. The electrical results presented and discussed here also include the behavior of the temperature of the ferroelectric-paraelectric phase transition as well as the normal or diffuse and/or relaxor nature of this transition depending on the La(3+) content. (c) 2008 Elsevier Ltd. All fights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructural beta-nickel hydroxide (beta-Ni(OH)(2)) plates were prepared using the microwave hydrothermal (MH) method at a low temperature and short reaction times. An ammonia solution was employed as the coordinating agent, which reacts with [Ni(H(2)O)(6)](2+) to control the growth of beta-Ni(OH)(2) nuclei. A trigonal beta-Ni(OH)(2) single phase was observed by X-ray diffraction (XRD) analyses, and the crystal cell was constructed with structural parameters and atomic coordinates obtained from Rietveld refinement. Field emission scanning electron microscopy (FE-SEM) images revealed that the samples consisted of hexagonal-shaped nanoplates with a different particle size distribution. Broad absorption bands assigned as transitions of Ni(2+) in oxygen octahedral sites were revealed by UV-vis spectra. Photoluminescence (PL) properties observed with a maximum peak centered in the blue-green region were attributed to different defects, which were produced during the nucleation process. We present a growth process scheme of the beta-Ni(OH)(2) nanoplates. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural, spectroscopic and dielectric properties of thulium-doped laser-heated pedestal Ta(2)O(5) as-grown fibres were studied. Undoped samples grow preferentially with a single crystalline monoclinic structure. The fibre with the lowest thulium content (0.1 at%) also shows predominantly a monoclinic phase and no intra-4f(12) Tm(3+) recombination was observed. For sample with the highest thulium amount (1.0 at%), the appearance of a dominant triclinic phase as well as intraionic optical activation was observed. The dependence of photoluminescence on excitation energy allows identification of different site locations of Tm(3+) ions in the lattice. The absence of recombination between the first and the ground-state multiplets as well as the temperature dependence of the observed transitions was justified by an efficient energy transfer between the Tm(3+) ions. Microwave dielectric properties were investigated using the small perturbation theory. At a frequency of 5 GHz, the undoped material exhibits a dielectric permittivity of 21 and for thulium-doped Ta(2)O(5) samples it decreases to 18 for the highest doping concentration. Nevertheless, the dielectric losses maintain a very low value. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the structural evolution of Y(0.9)Er(0.1)Al(3)(BO(3))(4) nanopowders using two soft chemistry routes, the sol-gel and the polymeric precursor methods. Differential scanning calorimetry, differential thermal analyses, thermogravimetric analyses, X-ray diffraction, Fourier-transform infrared, and Raman spectroscopy techniques have been used to study the chemical reactions between 700 and 1200 degrees C temperature range. From both methods the Y(0.9)Er(0.1)Al(3)(BO(3))(4) (Er:YAB) solid solution was obtained almost pure when the powdered samples were heat treated at 1150 degrees C. Based on the results, a schematic phase formation diagram of Er:YAB crystalline solid solution was proposed for powders from each method. The Er:YAB solid solution could be optimized by adding a small amount of boron oxide in excess to the Er:YAB nominal composition. The nanoparticles are obtained around 210 nm. Photoluminescence emission spectrum of the Er:YAB nanocrystalline powders was measured on the infrared region and the Stark components of the (4)I(13/2) and (4)I(15/2) levels were determined. Finally, for the first time the Raman spectrum of Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystalline phase is also presented. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solvatochromism and other spectroscopic and photophysical characteristics of four azo disperse dyes, derived from 2-amino-5-nitrothiazole, were evaluated and interpreted with the aid of experimental data and quantum mechanical calculations. For the non-substituted compound two conformers, E and Z, were proposed for the isolated molecules, being the second one considerably less stable. The optimization of these structures in combination with a SCRF methodology (IEFPCM, Simulating the molecules in a continuum dielectric with characteristics of methanol), suggests that the Z form is not stable in solution. This same behaviour is expected for the substituted compounds, which is corroborated by experimental data presented in previous investigations [A.E.H. Machado, L.M. Rodrigues, S. Gupta, A.M.F. Oliveira-Campos, A.M.S. Silva, J. Mol. Struct. 738 (2005) 239-245]. For the substituted compounds, two forms derived from E conformer (A and R) are possible. Quantum mechanical data suggest for the isolated molecules, that the low energy absorption hand of the E conformers involve at least two close electronic states. having the low-lying excited state a (1)(n,pi*) nature, and being the S-2 state attributed to a (1)(pi,pi*) transition. The data also suggest a small energy gap between the absorption peaks of A and B, related to the easy conversion between these forms. For the structures optimized in combination with the applied SCRF methodology, an states inversion is observed for the Substituted compounds, with a considerable diminish of the energy gap between A and B absorption peaks. The electronic spectra of these compounds are quite sensitive to changes in the solvent polarity. The positive solvatochromism is more evident in aprotic solvents, probably due to the polarization induced by the solute. These compounds do not fluoresce at 298 K, but present a small but perceptible fluorescence at 77 K, which seems to be favoured by the nature of the group in the 2 `-position of the phenyl ring. Moreover, such compounds present expressive values for first hyperpolarizability, which implies in good non-linear optics (NLO) responses and photoswitching capability. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excited state absorption and excited state dynamics of indocyanine-green (ICG) dissolved in dymethyl sulfoxide were measured using white-light continuum Z-scan (WLCZScan) and white-light continuum pump-probe (WLCPP) techniques. The excited state absorption spectrum, obtained through Z-scan measurements, revealed saturable absorption (SA) for wavelengths longer than 630 nm, while reverse saturable absorption (RSA) appeared, as indicated by a band at approximately 570 nm. Both processes were modeled by a three-energy-level diagram, from which the excited state cross-section values were determined. SA and RSA were also observed in pump-probe experiments, with a recovery time in the hundreds of picoseconds time scale due to the long lifetime of the first excited state of ICG. Such results contribute to the understanding of ICG optical properties, allowing application in photonics and medicine. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Ba(1-x)Y(2x/3)](Zr(0.25)Ti(0.75))O(3) powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD). Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO(6)] clusters is able to change the interaction forces between the O-Ti-O and O-Zr-O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO(6)] clusters. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.