974 resultados para NONASSOCIATIVE ALGEBRA
Resumo:
One of the most important challenges of network analysis remains the scarcity of reliable information on existing connection structures. This work explores theoretical and empirical methods of inferring directed networks from nodes attributes and from functions of these attributes that are computed for connected nodes. We discuss the conditions, under which an underlying connection structure can be (probabilistically) recovered, and propose a Bayesian recovery algorithm. In an empirical application, we test the algorithm on the data from the European School Survey Project on Alcohol and Other Drugs.
Resumo:
The propagation of nonlinear dust-lattice waves in a two-dimensional hexagonal crystal is investigated. Transverse (off-plane) dust grain oscillatory motion is considered in the form of a backward propagating wave packet whose linear and nonlinear characteristics are investigated. An evolution equation is obtained for the slowly varying amplitude of the first (fundamental) harmonic by making use of a two-dimensional lattice multiple scales technique. An analysis based on the continuum approximation (spatially extended excitations compared to the lattice spacing) shows that wave packets will be modulationally stable and that dark-type envelope solitons (density holes) may occur in the long wavelength region. Evidence is provided of modulational instability and of the occurrence of bright-type envelopes (pulses) at shorter wavelengths. The role of second neighbor interactions is also investigated and is shown to be rather weak in determining the modulational stability region. The effect of dissipation, assumed negligible in the algebra throughout the article, is briefly discussed.
Resumo:
The reduced Whitehead group $\SK$ of a graded division algebra graded by a torsion-free abelian group is studied. It is observed that the computations here are much more straightforward than in the non-graded setting. Bridges to the ungraded case are then established by the following two theorems: It is proved that $\SK$ of a tame valued division algebra over a henselian field coincides with $\SK$ of its associated graded division algebra. Furthermore, it is shown that $\SK$ of a graded division algebra is isomorphic to $\SK$ of its quotient division algebra. The first theorem gives the established formulas for the reduced Whitehead group of certain valued division algebras in a unified manner, whereas the latter theorem covers the stability of reduced Whitehead groups, and also describes $\SK$ for generic abelian crossed products.
Resumo:
The reduced unitary Whitehead group $\SK$ of a graded division algebra equipped with a unitary involution (i.e., an involution of the second kind) and graded by a torsion-free abelian group is studied. It is shown that calculations in the graded setting are much simpler than their nongraded counterparts. The bridge to the non-graded case is established by proving that the unitary $\SK$ of a tame valued division algebra wih a unitary involution over a henselian field coincides with the unitary $\SK$ of its associated graded division algebra. As a consequence, the graded approach allows us not only to recover results available in the literature with substantially easier proofs, but also to calculate the unitary $\SK$ for much wider classes of division algebras over henselian fields.
Resumo:
Following ideas of Quillen we prove that the graded K-theory of a Z-multi-graded ring with support contained in a pointed cone is entirely determined by the K-theory of the sub-ring of elements of degree 0.
Resumo:
We show that if $\cl A$ is the tensor product of finitely many continuous nest algebras, $\cl B$ is a CDCSL algebra and $\cl A$ and $\cl B$ have the same normaliser semi-group then either $\cl A = \cl B$ or $\cl A^* = \cl B$.
Resumo:
We prove a continuity result for the map sending a masa-bimodule to its support. We characterise the convergence of a net of weakly closed convex hulls of bilattices in terms of the convergence of the corresponding supports, and establish a lower-semicontinuity result for the map sending a support to the corresponding masa-bimodule.
Resumo:
We introduce and study the notion of operator hyperreflexivity of subspace lattices. This notion is a natural analogue of the operator reflexivity and is related to hyperreflexivity of subspace lattices introduced by Davidson and Harrison.
Resumo:
Let $(X,\mu)$ and $(Y,\nu)$ be standard measure spaces. A function $\nph\in L^\infty(X\times Y,\mu\times\nu)$ is called a (measurable) Schur multiplier if the map $S_\nph$, defined on the space of Hilbert-Schmidt operators from $L_2(X,\mu)$ to $L_2(Y,\nu)$ by multiplying their integral kernels by $\nph$, is bound-ed in the operator norm. The paper studies measurable functions $\nph$ for which $S_\nph$ is closable in the norm topology or in the weak* topology. We obtain a characterisation of w*-closable multipliers and relate the question about norm closability to the theory of operator synthesis. We also study multipliers of two special types: if $\nph$ is of Toeplitz type, that is, if $\nph(x,y)=f(x-y)$, $x,y\in G$, where $G$ is a locally compact abelian group, then the closability of $\nph$ is related to the local inclusion of $f$ in the Fourier algebra $A(G)$ of $G$. If $\nph$ is a divided difference, that is, a function of the form $(f(x)-f(y))/(x-y)$, then its closability is related to the ``operator smoothness'' of the function $f$. A number of examples of non closable, norm closable and w*-closable multipliers are presented.
Resumo:
Let $G$ be a locally compact $\sigma$-compact group. Motivated by an earlier notion for discrete groups due to Effros and Ruan, we introduce the multidimensional Fourier algebra $A^n(G)$ of $G$. We characterise the completely bounded multidimensional multipliers associated with $A^n(G)$ in several equivalent ways. In particular, we establish a completely isometric embedding of the space of all $n$-dimensional completely bounded multipliers into the space of all Schur multipliers on $G^{n+1}$ with respect to the (left) Haar measure. We show that in the case $G$ is amenable the space of completely bounded multidimensional multipliers coincides with the multidimensional Fourier-Stieltjes algebra of $G$ introduced by Ylinen. We extend some well-known results for abelian groups to the multidimensional setting.
Resumo:
The purpose of the present paper is to lay the foundations for a systematic study of tensor products of operator systems. After giving an axiomatic definition of tensor products in this category, we examine in detail several particular examples of tensor products, including a minimal, maximal, maximal commuting, maximal injective and some asymmetric tensor products. We characterize these tensor products in terms of their universal properties and give descriptions of their positive cones. We also characterize the corresponding tensor products of operator spaces induced by a certain canonical inclusion of an operator space into an operator system. We examine notions of nuclearity for our tensor products which, on the category of C*-algebras, reduce to the classical notion. We exhibit an operator system S which is not completely order isomorphic to a C*-algebra yet has the property that for every C*-algebra A, the minimal and maximal tensor product of S and A are equal.
Resumo:
We investigate the simplicial cohomology of certain Banach operator algebras. The two main examples considered are the Banach algebra of all bounded operators on a Banach space and its ideal of approximable operators. Sufficient conditions will be given forcing Banach algebras of this kind to be simplicially trivial.
Resumo:
It is shown that if $11$, the operator $I+T$ attains its norm. A reflexive Banach space $X$ and a bounded rank one operator $T$ on $X$ are constructed such that $\|I+T\|>1$ and $I+T$ does not attain its norm.
Resumo:
We prove that any bounded linear operator on $L_p[0,1]$ for $1\leq p
Resumo:
Suppose X is a projective toric scheme defined over a ring R and equipped with an ample line bundle L . We prove that its K-theory has a direct summand of the form K(R)(k+1) where k = 0 is minimal such that L?(-k-1) is not acyclic. Using a combinatorial description of quasi-coherent sheaves we interpret and prove this result for a ring R which is either commutative, or else left noetherian.