985 resultados para N-15 Backbone Dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the IEEE 802.15.4/Zigbee protocol stack is being considered as a promising technology for low-cost low-power Wireless Sensor Networks (WSNs), several issues in the standard specifications are still open. One of those ambiguous issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for ensuring QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multihop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes a synchronization mechanism based on Time Division Beacon Scheduling to construct cluster-tree WSNs. We also propose a methodology for an efficient duty cycle management in each router (cluster-head) of a cluster-tree WSN that ensures the fairest use of bandwidth resources. The feasibility of the proposal is clearly demonstrated through an experimental test bed based on our own implementation of the IEEE 802.15.4/Zigbee protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol has the ability to support time-sensitive Wireless Sensor Network (WSN) applications due to the Guaranteed Time Slot (GTS) Medium Access Control mechanism. Recently, several analytical and simulation models of the IEEE 802.15.4 protocol have been proposed. Nevertheless, currently available simulation models for this protocol are both inaccurate and incomplete, and in particular they do not support the GTS mechanism. In this paper, we propose an accurate OPNET simulation model, with focus on the implementation of the GTS mechanism. The motivation that has driven this work is the validation of the Network Calculus based analytical model of the GTS mechanism that has been previously proposed and to compare the performance evaluation of the protocol as given by the two alternative approaches. Therefore, in this paper we contribute an accurate OPNET model for the IEEE 802.15.4 protocol. Additionally, and probably more importantly, based on the simulation model we propose a novel methodology to tune the protocol parameters such that a better performance of the protocol can be guaranteed, both concerning maximizing the throughput of the allocated GTS as well as concerning minimizing frame delay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collision-free beacon frame scheduling schemes. We strongly believe that the results provided in this paper trigger a significant step towards the practical and efficient use of IEEE 802.15.4/Zigbee cluster-tree networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se a guerra é a continuação da política por outros meios, então certamente que nela a comunicação, em sentido lato, esteve sempre presente e desempenhou um papel chave. As guerras não implicam apenas a violência, mas também a persuasão, a contrainformação, o convencimento e o combate ideológico. Nas guerras modernas, os media têm sido um elemento fundamental para mobilizar nações moldadas por dinâmicas de desenraizamento e desterritorialização com vista a um esforço conjunto de apoio popular à ação bélica do Estado. Este artigo incide nas transformações que a própria teoria e investigação em comunicação e media sofreram no período entre as duas Guerras Mundiais do século XX. Trata-se de um contexto histórico decisivo para compreender como a institucionalização do campo da comunicação num país central como os EUA ocorreu em condições sociais e políticas que contribuíram para o seu perfil epistemológico, posições teóricas e para a configuração do poder no próprio sistema científico universitário, cujas repercussões continuam a fazer-se sentir de diversas e complexas formas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of coordinating two non-holonomic mobile robots that move in formation while transporting a long payload. A competitive dynamics is introduced that gradually controls the activation and deactivation of individual behaviors. This process introduces (asymmetrical) hysteresis during behavioral switching. As a result behavioral oscillations, due to noisy information, are eliminated. Results in indoor environments show that if parameter values are chosen within reasonable ranges then, in spite of noise in the robots communi- cation and sensors, the overall robotic system works quite well even in cluttered environments. The robots overt behavior is stable and smooth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In beacon-enabled mode, IEEE 802.15.4 is ruled by the slotted CSMA/CA Medium Access Control (MAC) protocol. The standard slotted CSMA/CA mechanism does not provide any means of differentiated services to improve the quality of service for timecritical events (such as alarms, time slot reservation, PAN management messages etc.). In this paper, we present and discuss practical service differentiation mechanisms to improve the performance of slotted CSMA/CA for time-critical events, with only minor add-ons to the protocol. The contribution of our proposal is more practical than theoretical since our initial requirement is to leave the original algorithm of the slotted CSMA/CA unchanged, but rather tuning its parameters adequately according to the criticality of the messages. We present a simulation study based on an accurate model of the IEEE 802.15.4 MAC protocol, to evaluate the differentiated service strategies. Four scenarios with different settings of the slotted CSMA/CA parameters are defined. Each scenario is evaluated for FIFO and Priority Queuing. The impact of the hiddennode problem is also analyzed, and a solution to mitigate it is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ART-WiSe (Architecture for Real-Time communications in Wireless Sensor Networks) framework aims at the design of new communication architectures and mechanisms for time-sensitive Wireless Sensor Networks (WSNs). We adopted a two-tiered architecture where an overlay Wireless Local Area Network (Tier 2) serves as a backbone for a WSN (Tier 1), relying on existing standard communication protocols and commercial-off-the-shell (COTS) technologies – IEEE 802.15.4/ZigBee for Tier 1 and IEEE 802.11 for Tier 2. In this line, a test-bed application is being developed for assessing, validating and demonstrating the ART-WiSe architecture. A pursuit-evasion application was chosen since it fulfils a number of requirements, namely it is feasible and appealing and imposes some stress to the architecture in terms of timeliness. To develop the testbed based on the previously referred technologies, an implementation of the IEEE 8021.5.4/ZigBee protocols is being carried out, since there is no open source available to the community. This paper highlights some relevant aspects of the ART-WiSe architecture, provides some intuition on the protocol stack implementation and presents a general view over the envisaged test-bed application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 Medium Access Control (MAC) protocol is an enabling technology for time sensitive wireless sensor networks thanks to its Guaranteed-Time Slot (GTS) mechanism in the beacon-enabled mode. However, the protocol only supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTSs may be only partially used, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of a GTS by multiple nodes, while all their (delay, bandwidth) requirements are still satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our proposal improves the bandwidth utilization compared to the explicit allocation used in the IEEE 802.15.4 protocol standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze the performance limits of the slotted CSMA/CA mechanism of IEEE 802.15.4 in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent) on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks (LR-WPAN) including wireless sensor networks (WSNs). It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When in beaconenabled mode, the protocol can provide timeliness guarantees by using its Guaranteed Time Slot (GTS) mechanism. However, power-efficiency and timeliness guarantees are often two antagonistic requirements in wireless sensor networks. The purpose of this paper is to analyze and propose a methodology for setting the relevant parameters of IEEE 802.15.4-compliant WSNs that takes into account a proper trade-off between power-efficiency and delay bound guarantees. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters, using Network Calculus formalism. We then evaluate the delay bound guaranteed by a GTS allocation and express it as a function of the duty cycle. Based on the relation between the delay requirement and the duty cycle, we propose a power-efficient superframe selection method that simultaneously reduces power consumption and enables meeting the delay requirements of real-time flows allocating GTSs. The results of this work may pave the way for a powerefficient management of the GTS mechanism in an IEEE 802.15.4 cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This technical report is to provide a reference guide to the implementation of the IEEE 802.15.4 protocol in nesC/TinyOS for the MICAz motes. The implementation is provided as a tool that can be used to implement, test and evaluate the current functionalities defined in the protocol standard as well as to enable the development of functionalities not yet implemented and new add-ons to the protocol.