830 resultados para Multiport Network Model
Resumo:
This paper presents a Bi-level Programming (BP) approach to solve the Transmission Network Expansion Planning (TNEP) problem. The proposed model is envisaged under a market environment and considers security constraints. The upper-level of the BP problem corresponds to the transmission planner which procures the minimization of the total investment and load shedding cost. This upper-level problem is constrained by a single lower-level optimization problem which models a market clearing mechanism that includes security constraints. Results on the Garver's 6-bus and IEEE 24-bus RTS test systems are presented and discussed. Finally, some conclusions are drawn. © 2011 IEEE.
Resumo:
In this paper was proposed the development of an heterogeneous system using the microcontroller (AT90CANI28) where the protocol model CAN and the standard IEEE 802.15.4 are connected. This module is able to manage and monitor sensors and actuators using CAN and, through the wireless standard 802.15.4, communicate with the other network modules. © 2011 IEEE.
Resumo:
This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS) transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed mathematical model presents the structure of a mixed-integer nonlinear programming (MINLP) problem and is based on the standard DC model. In this paper, there is also applied a specialized genetic algorithm aimed at optimizing the allocation of candidate components in the network. Results obtained from computational simulations carried out with IEEE-24 bus system show an outstanding performance of the proposed methodology and model, indicating the technical viability of using these nonconventional devices during the planning process. Copyright © 2012 Celso T. Miasaki et al.
Resumo:
Considering the importance of monitoring the water quality parameters, remote sensing is a practicable alternative to limnological variables detection, which interacts with electromagnetic radiation, called optically active components (OAC). Among these, the phytoplankton pigment chlorophyll a is the most representative pigment of photosynthetic activity in all classes of algae. In this sense, this work aims to develop a method of spatial inference of chlorophyll a concentration using Artificial Neural Networks (ANN). To achieve this purpose, a multispectral image and fluorometric measurements were used as input data. The multispectral image was processed and the net training and validation dataset were carefully chosen. From this, the neural net architecture and its parameters were defined to model the variable of interest. In the end of training phase, the trained network was applied to the image and a qualitative analysis was done. Thus, it was noticed that the integration of fluorometric and multispectral data provided good results in the chlorophyll a inference, when combined in a structure of artificial neural networks.
Resumo:
In this paper, a search for supersymmetry (SUSY) is presented in events with two opposite-sign isolated leptons in the final state, accompanied by hadronic jets and missing transverse energy. An artificial neural network is employed to discriminate possible SUSY signals from a standard model background. The analysis uses a data sample collected with the CMS detector during the 2011 LHC run, corresponding to an integrated luminosity of 4.98 fb-1 of proton-proton collisions at the center-of-mass energy of 7 TeV. Compared to other CMS analyses, this one uses relaxed criteria on missing transverse energy (EÌ̧T>40 GeV) and total hadronic transverse energy (HT>120 GeV), thus probing different regions of parameter space. Agreement is found between standard model expectation and observations, yielding limits in the context of the constrained minimal supersymmetric standard model and on a set of simplified models. © 2013 CERN.
Resumo:
Currently, many museums, botanic gardens and herbariums keep data of biological collections and using computational tools researchers digitalize and provide access to their data using data portals. The replication of databases in portals can be accomplished through the use of protocols and data schema. However, the implementation of this solution demands a large amount of time, concerning both the transfer of fragments of data and processing data within the portal. With the growth of data digitalization in institutions, this scenario tends to be increasingly exacerbated, making it hard to maintain the records updated on the portals. As an original contribution, this research proposes analysing the data replication process to evaluate the performance of portals. The Inter-American Biodiversity Information Network (IABIN) biodiversity data portal of pollinators was used as a study case, which supports both situations: conventional data replication of records of specimen occurrences and interactions between them. With the results of this research, it is possible to simulate a situation before its implementation, thus predicting the performance of replication operations. Additionally, these results may contribute to future improvements to this process, in order to decrease the time required to make the data available in portals. © Rinton Press.
Resumo:
In this paper, a hybrid heuristic methodology that employs fuzzy logic for solving the AC transmission network expansion planning (AC-TEP) problem is presented. An enhanced constructive heuristic algorithm aimed at obtaining a significant quality solution for such complicated problems considering contingency is proposed. In order to indicate the severity of the contingency, 2 performance indices, namely the line flow performance index and voltage performance index, are calculated. An interior point method is applied as a nonlinear programming solver to handle such nonconvex optimization problems, while the objective function includes the costs of the new transmission lines as well as the real power losses. The performance of the proposed method is examined by applying it to the well-known Garver system for different cases. The simulation studies and result analysis demonstrate that the proposed method provides a promising way to find an optimal plan. Obtaining the best quality solution shows the capability and the viability of the proposed algorithm in AC-TEP. © Tübi̇tak..
Resumo:
Editorial remarks.-- Open discussion: Conceptual change in regulation in a model of public service provision ; Policies and institutional frameworks for drinking water supply and sanitation ; Strategies for low-carbon development in megacities in Latin America ; Adapting to climate change in water management in the irrigation sector.-- Meetings: Towards a vision on natural resource governance for equality ; Water resources faced with uncertainty and the risk of climate change ; Regulation challenges in the water sector.-- News of the Network: Lessons to be drawn from the interprovincial Colorado River flow distribution agreement ; Rural drinking water programme in Chile ; Ecuador’s Act on Water Resources and Water Use and Exploitation.-- Internet and WWW News
Resumo:
Editorial remarks.-- Open discussion: Regulation under the public model of service provision ; Regulatory progress and challenges in Argentina ; Twenty years of SUNASS: development, experience, lessons learned and challenges ; Possible conflict between efficiency and sustainability ; Best practices in regulating State-owned and municipal water utilities.-- News of the Network: Water use charge in the Province of Buenos Aires ; National Drinking Water and Sanitation Sector Policy of Guatemala ; Sanitation Services Modernization Law of Peru ; Internet and WWW News
Resumo:
In different regions of Brazil, population growth and economic development can degrade water quality, compromising watershed health and human supply. Because of its ability to combine spatial and temporal data in the same environment and to create water resources management (WRM) models, the Geographical Information System (GIS) is a powerful tool for managing water resources, preventing floods and estimating water supply. This paper discusses the integration between GIS and hydrological models and presents a case study relating to the upper section of the Paraíba do Sul Basin (Sao Paulo State portion), situated in the Southeast of Brazil. The case study presented in this paper has a database suitable for the basin's dimensions, including digitized topographic maps at a 50,000 scale. From an ArcGIS®/ArcHydro Framework Data Model, a geometric network was created to produce different raster products. This first grid derived from the digital elevation model grid (DEM) is the flow direction map followed by flow accumulation, stream and catchment maps. The next steps in this research are to include the different multipurpose reservoirs situated along the Paraíba do Sul River and to incorporate rainfall time series data in ArcHydro to build a hydrologic data model within a GIS environment in order to produce a comprehensive spatial-temporal model.
Resumo:
We present the results of a search for gravitational waves associated with 223 gamma-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M(circle dot)c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
Resumo:
The hydroelectric power plant Hidroltuango represents a major expansion for the Colombian electrical system (with a total capacity of 2400 MW). This paper analyzes the possible interconnections and investments involved in connecting Hidroltuango, in order to strengthen the Colombian national transmission system. A Mixed Binary Linear Programming (MBLP) model was used to solve the Multistage Transmission Network Expansion Planning (MTEP) problem of the Colombian electrical system, taking the N-1 safety criterion into account. The N-1 safety criterion indicates that the transmission system must be expanded so that the system will continue to operate properly if an outage in a system element (within a pre-defined set of contingencies) occurs. The use of a MBLP model guaranteed the convergence with existing classical optimization methods and the optimal solution for the MTEP using commercial solvers. Multiple scenarios for generation and demand were used to consider uncertainties within these parameters. The model was implemented using the algebraic modeling language AMPL and solved using the commercial solver CPLEX. The proposed model was then applied to the Colombian electrical system using the planning horizon of 2018-2025. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the application of artificial neural networks in the analysis of the structural integrity of a building. The main objective is to apply an artificial neural network based on adaptive resonance theory, called ARTMAP-Fuzzy neural network and apply it to the identification and characterization of structural failure. This methodology can help professionals in the inspection of structures, to identify and characterize flaws in order to conduct preventative maintenance to ensure the integrity of the structure and decision-making. In order to validate the methodology was modeled a building of two walk, and from this model were simulated various situations (base-line condition and improper conditions), resulting in a database of signs, which were used as input data for ARTMAP-Fuzzy network. The results show efficiency, robustness and accuracy.
Resumo:
Faced with an imminent restructuring of the electric power system, over the past few years many countries have invested in a new paradigm known as Smart Grid. This paradigm targets optimization and automation of electric power network, using advanced information and communication technologies. Among the main communication protocols for Smart Grids we have the DNP3 protocol, which provides secure data transmission with moderate rates. The IEEE 802.15.4 is another communication protocol also widely used in Smart Grid, especially in the so-called Home Area Network (HAN). Thus, many applications of Smart Grid depends on the interaction of these two protocols. This paper proposes modeling, in the traditional network simulator NS-2, the integration of DNP3 protocol and the IEEE 802.15.4 wireless standard for low cost simulations of Smart Grid applications.
Resumo:
Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV–Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV–Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 105 ± 1.90 105 cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV–VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.