963 resultados para Monte-Carlo Simulation Method
Resumo:
Les modèles incrémentaux sont des modèles statistiques qui ont été développés initialement dans le domaine du marketing. Ils sont composés de deux groupes, un groupe contrôle et un groupe traitement, tous deux comparés par rapport à une variable réponse binaire (le choix de réponses est « oui » ou « non »). Ces modèles ont pour but de détecter l’effet du traitement sur les individus à l’étude. Ces individus n’étant pas tous des clients, nous les appellerons : « prospects ». Cet effet peut être négatif, nul ou positif selon les caractéristiques des individus composants les différents groupes. Ce mémoire a pour objectif de comparer des modèles incrémentaux d’un point de vue bayésien et d’un point de vue fréquentiste. Les modèles incrémentaux utilisés en pratique sont ceux de Lo (2002) et de Lai (2004). Ils sont initialement réalisés d’un point de vue fréquentiste. Ainsi, dans ce mémoire, l’approche bayésienne est utilisée et comparée à l’approche fréquentiste. Les simulations sont e ectuées sur des données générées avec des régressions logistiques. Puis, les paramètres de ces régressions sont estimés avec des simulations Monte-Carlo dans l’approche bayésienne et comparés à ceux obtenus dans l’approche fréquentiste. L’estimation des paramètres a une influence directe sur la capacité du modèle à bien prédire l’effet du traitement sur les individus. Nous considérons l’utilisation de trois lois a priori pour l’estimation des paramètres de façon bayésienne. Elles sont choisies de manière à ce que les lois a priori soient non informatives. Les trois lois utilisées sont les suivantes : la loi bêta transformée, la loi Cauchy et la loi normale. Au cours de l’étude, nous remarquerons que les méthodes bayésiennes ont un réel impact positif sur le ciblage des individus composant les échantillons de petite taille.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.
Resumo:
Este estudio presenta la validación de las observaciones que realizó el programa de observación pesquera llamado Programa Bitácoras de Pesca (PBP) durante el periodo 2005 - 2011 en el área de distribución donde operan las embarcaciones industriales de cerco dedicadas a la pesca del stock norte-centro de la anchoveta peruana (Engraulis ringens). Además, durante ese mismo periodo y área de distribución, se estimó la magnitud del descarte por exceso de captura, descarte de juveniles y la captura incidental de dicha pesquera. Se observaron 3 768 viajes de un total de 302 859, representando un porcentaje de 1.2 %. Los datos del descarte por exceso de captura, descarte de juveniles y captura incidental registrados en los viajes observados, se caracterizaron por presentar un alta proporción de ceros. Para la validación de las observaciones, se realizó un estudio de simulación basado en la metodología de Monte Carlo usando un modelo de distribución binomial negativo. Esta permite inferir sobre el nivel de cobertura óptima y conocer si la información obtenida en el programa de observación es contable. De este análisis, se concluye que los niveles de observación actual se deberían incrementar hasta tener un nivel de cobertura de al menos el 10% del total de viajes que realicen en el año las embarcaciones industriales de cerco dedicadas a la pesca del stock norte-centro de la anchoveta peruana. La estimación del descarte por exceso de captura, descarte de juveniles y captura incidental se realizó mediante tres metodologías: Bootstrap, Modelo General Lineal (GLM) y Modelo Delta. Cada metodología estimó distintas magnitudes con tendencias similares. Las magnitudes estimadas fueron comparadas usando un ANOVA Bayesiano, la cual muestra que hubo escasa evidencia que las magnitudes estimadas del descarte por exceso de captura por metodología sean diferentes, lo mismo se presentó para el caso de la captura incidental, mientras que para el descarte de juveniles mostró que hubieron diferencias sustanciales de ser diferentes. La metodología que cumplió los supuestos y explico la mayor variabilidad de las variables modeladas fue el Modelo Delta, el cual parece ser una mejor alternativa para la estimación, debido a la alta proporción de ceros en los datos. Las estimaciones promedio del descarte por exceso de captura, descarte de juveniles y captura incidental aplicando el Modelo Delta, fueron 252 580, 41 772, 44 823 toneladas respectivamente, que en conjunto representaron el 5.74% de los desembarques. Además, con la magnitud de la estimación del descarte de juveniles, se realizó un ejercicio de proyección de biomasa bajo el escenario hipotético de no mortalidad por pesca y que los individuos juveniles descartados sólo presentaron tallas de 8 y 11 cm., en la cual se obtuvo que la biomasa que no estará disponible a la pesca está entre los 52 mil y 93 mil toneladas.
Resumo:
Il presente elaborato analizza il problema dell'intrusione salina e valuta l'influenza dei parametri idrologici e idrogeologici sulle dinamiche del processo mediate simulazioni Monte Carlo. A scopo esemplificativo, l’intrusione salina viene studiata in condizioni stazionarie e nell’ipotesi di interfaccia netta. La tecnica di simulazione viene descritta a partire dai concetti statistici di base che includono la definizione delle distribuzioni di probabilità scelte per descrviere il comportamento dei parametri del modello concettuale e la procedura di campionamento di tali distribuzioni. Un codice in Matlab è stato realizzato per l’applicazione ad un semplice caso studio.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
A dissertation submitted in fulfillment of the requirements to the degree of Master in Computer Science and Computer Engineering
Resumo:
Recent developments in automation, robotics and artificial intelligence have given a push to a wider usage of these technologies in recent years, and nowadays, driverless transport systems are already state-of-the-art on certain legs of transportation. This has given a push for the maritime industry to join the advancement. The case organisation, AAWA initiative, is a joint industry-academia research consortium with the objective of developing readiness for the first commercial autonomous solutions, exploiting state-of-the-art autonomous and remote technology. The initiative develops both autonomous and remote operation technology for navigation, machinery, and all on-board operating systems. The aim of this study is to develop a model with which to estimate and forecast the operational costs, and thus enable comparisons between manned and autonomous cargo vessels. The building process of the model is also described and discussed. Furthermore, the model’s aim is to track and identify the critical success factors of the chosen ship design, and to enable monitoring and tracking of the incurred operational costs as the life cycle of the vessel progresses. The study adopts the constructive research approach, as the aim is to develop a construct to meet the needs of a case organisation. Data has been collected through discussions and meeting with consortium members and researchers, as well as through written and internal communications material. The model itself is built using activity-based life cycle costing, which enables both realistic cost estimation and forecasting, as well as the identification of critical success factors due to the process-orientation adopted from activity-based costing and the statistical nature of Monte Carlo simulation techniques. As the model was able to meet the multiple aims set for it, and the case organisation was satisfied with it, it could be argued that activity-based life cycle costing is the method with which to conduct cost estimation and forecasting in the case of autonomous cargo vessels. The model was able to perform the cost analysis and forecasting, as well as to trace the critical success factors. Later on, it also enabled, albeit hypothetically, monitoring and tracking of the incurred costs. By collecting costs this way, it was argued that the activity-based LCC model is able facilitate learning from and continuous improvement of the autonomous vessel. As with the building process of the model, an individual approach was chosen, while still using the implementation and model building steps presented in existing literature. This was due to two factors: the nature of the model and – perhaps even more importantly – the nature of the case organisation. Furthermore, the loosely organised network structure means that knowing the case organisation and its aims is of great importance when conducting a constructive research.
Resumo:
Les modèles incrémentaux sont des modèles statistiques qui ont été développés initialement dans le domaine du marketing. Ils sont composés de deux groupes, un groupe contrôle et un groupe traitement, tous deux comparés par rapport à une variable réponse binaire (le choix de réponses est « oui » ou « non »). Ces modèles ont pour but de détecter l’effet du traitement sur les individus à l’étude. Ces individus n’étant pas tous des clients, nous les appellerons : « prospects ». Cet effet peut être négatif, nul ou positif selon les caractéristiques des individus composants les différents groupes. Ce mémoire a pour objectif de comparer des modèles incrémentaux d’un point de vue bayésien et d’un point de vue fréquentiste. Les modèles incrémentaux utilisés en pratique sont ceux de Lo (2002) et de Lai (2004). Ils sont initialement réalisés d’un point de vue fréquentiste. Ainsi, dans ce mémoire, l’approche bayésienne est utilisée et comparée à l’approche fréquentiste. Les simulations sont e ectuées sur des données générées avec des régressions logistiques. Puis, les paramètres de ces régressions sont estimés avec des simulations Monte-Carlo dans l’approche bayésienne et comparés à ceux obtenus dans l’approche fréquentiste. L’estimation des paramètres a une influence directe sur la capacité du modèle à bien prédire l’effet du traitement sur les individus. Nous considérons l’utilisation de trois lois a priori pour l’estimation des paramètres de façon bayésienne. Elles sont choisies de manière à ce que les lois a priori soient non informatives. Les trois lois utilisées sont les suivantes : la loi bêta transformée, la loi Cauchy et la loi normale. Au cours de l’étude, nous remarquerons que les méthodes bayésiennes ont un réel impact positif sur le ciblage des individus composant les échantillons de petite taille.
Resumo:
The anticipated growth of air traffic worldwide requires enhanced Air Traffic Management (ATM) technologies and procedures to increase the system capacity, efficiency, and resilience, while reducing environmental impact and maintaining operational safety. To deal with these challenges, new automation and information exchange capabilities are being developed through different modernisation initiatives toward a new global operational concept called Trajectory Based Operations (TBO), in which aircraft trajectory information becomes the cornerstone of advanced ATM applications. This transformation will lead to higher levels of system complexity requiring enhanced Decision Support Tools (DST) to aid humans in the decision making processes. These will rely on accurate predicted aircraft trajectories, provided by advanced Trajectory Predictors (TP). The trajectory prediction process is subject to stochastic effects that introduce uncertainty into the predictions. Regardless of the assumptions that define the aircraft motion model underpinning the TP, deviations between predicted and actual trajectories are unavoidable. This thesis proposes an innovative method to characterise the uncertainty associated with a trajectory prediction based on the mathematical theory of Polynomial Chaos Expansions (PCE). Assuming univariate PCEs of the trajectory prediction inputs, the method describes how to generate multivariate PCEs of the prediction outputs that quantify their associated uncertainty. Arbitrary PCE (aPCE) was chosen because it allows a higher degree of flexibility to model input uncertainty. The obtained polynomial description can be used in subsequent prediction sensitivity analyses thanks to the relationship between polynomial coefficients and Sobol indices. The Sobol indices enable ranking the input parameters according to their influence on trajectory prediction uncertainty. The applicability of the aPCE-based uncertainty quantification detailed herein is analysed through a study case. This study case represents a typical aircraft trajectory prediction problem in ATM, in which uncertain parameters regarding aircraft performance, aircraft intent description, weather forecast, and initial conditions are considered simultaneously. Numerical results are compared to those obtained from a Monte Carlo simulation, demonstrating the advantages of the proposed method. The thesis includes two examples of DSTs (Demand and Capacity Balancing tool, and Arrival Manager) to illustrate the potential benefits of exploiting the proposed uncertainty quantification method.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Florestal, 2016.
Resumo:
Sequential panel selection methods (spsms — procedures that sequentially use conventional panel unit root tests to identify I(0)I(0) time series in panels) are increasingly used in the empirical literature. We check the reliability of spsms by using Monte Carlo simulations based on generating directly the individual asymptotic pp values to be combined into the panel unit root tests, in this way isolating the classification abilities of the procedures from the small sample properties of the underlying univariate unit root tests. The simulations consider both independent and cross-dependent individual test statistics. Results suggest that spsms may offer advantages over time series tests only under special conditions.
Resumo:
Numerose osservazioni astrofisiche e cosmologiche compiute a partire dagli anni '30 confermano che circa il 26% dell'Universo è costituito da materia oscura. Tale materia ha la particolarità di interagire solo gravitazionalmente e, forse, debolmente: essa si presenta massiva e neutra. Tra le numerose ipotesi avanzate riguardanti la natura della materia oscura una delle più accreditate è quella delle WIMP (Weakly Interacting Massive Particle). Il progetto all'avanguardia nella ricerca diretta delle WIMP è XENON presso i Laboratori Nazionali del Gran Sasso (LNGS). Tale esperimento è basato sulla diffusione elastica delle particelle ricercate su nuclei di Xeno: il rivelatore utilizzato è una TPC a doppia fase (liquido-gas). La rivelazione diretta di materia oscura prevede l'impiego di un rivelatore molto grande, a causa della piccola probabilità di interazione, e di ambienti a bassa radioattività naturale, per ridurre al minimo il rumore di fondo. Risulta necessario inoltre l'utilizzo di uno schermo attivo che individui particelle di alta energia, in particolare muoni cosmici, che possono produrre falsi segnali. È stato realizzato a tale scopo un sistema di Muon Veto composto da un grande cilindro d'acqua posto attorno alla TPC, equipaggiato con 84 fotorivelatori atti ad osservare i fotoni ottici emessi per effetto Čherenkov dai raggi cosmici. Il presente lavoro di tesi si colloca nell'ambito di un programma di simulazione Monte Carlo, creato per realizzare virtualmente l'esperimento XENON1T e per effettuare studi preliminari. Lo scopo di tale lavoro è stato quello di contribuire alla scrittura e alla verifica del codice di simulazione e allo studio di eventi di muoni cosmici da esso generati. L'analisi dati è stata effettuata scrivendo un programma in C++ in grado di analizzare i risultati forniti dal simulatore e di generare degli Event Display statici e dinamici per una visualizzazione efficace degli eventi.