914 resultados para Model transformation analysis
Resumo:
PURPOSE To explore whether population-related pharmacogenomics contribute to differences in patient outcomes between clinical trials performed in Japan and the United States, given similar study designs, eligibility criteria, staging, and treatment regimens. METHODS We prospectively designed and conducted three phase III trials (Four-Arm Cooperative Study, LC00-03, and S0003) in advanced-stage, non-small-cell lung cancer, each with a common arm of paclitaxel plus carboplatin. Genomic DNA was collected from patients in LC00-03 and S0003 who received paclitaxel (225 mg/m(2)) and carboplatin (area under the concentration-time curve, 6). Genotypic variants of CYP3A4, CYP3A5, CYP2C8, NR1I2-206, ABCB1, ERCC1, and ERCC2 were analyzed by pyrosequencing or by PCR restriction fragment length polymorphism. Results were assessed by Cox model for survival and by logistic regression for response and toxicity. Results Clinical results were similar in the two Japanese trials, and were significantly different from the US trial, for survival, neutropenia, febrile neutropenia, and anemia. There was a significant difference between Japanese and US patients in genotypic distribution for CYP3A4*1B (P = .01), CYP3A5*3C (P = .03), ERCC1 118 (P < .0001), ERCC2 K751Q (P < .001), and CYP2C8 R139K (P = .01). Genotypic associations were observed between CYP3A4*1B for progression-free survival (hazard ratio [HR], 0.36; 95% CI, 0.14 to 0.94; P = .04) and ERCC2 K751Q for response (HR, 0.33; 95% CI, 0.13 to 0.83; P = .02). For grade 4 neutropenia, the HR for ABCB1 3425C-->T was 1.84 (95% CI, 0.77 to 4.48; P = .19). CONCLUSION Differences in allelic distribution for genes involved in paclitaxel disposition or DNA repair were observed between Japanese and US patients. In an exploratory analysis, genotype-related associations with patient outcomes were observed for CYP3A4*1B and ERCC2 K751Q. This common-arm approach facilitates the prospective study of population-related pharmacogenomics in which ethnic differences in antineoplastic drug disposition are anticipated.
Resumo:
The present article describes and analyses youth criminality in the city of Rosario, Argentina between the years 2003-2006. Key actors’ understandings of and responses to the conflict were investigated by means of semi-structured interviews, observations, discourse analysis of policy documents, analysis of secondary data, and draw heavily on the experience of the author, a citizen and youth worker of Rosario. The actors examined were the police, the local government, young delinquents and youth organisations. Youth criminality is analysed from a conflict transformation approach using conflict analysis tools. Whereas, the provincial police understand the issue as a delinquency problem, other actors perceive it as an expression of a wider urban social conflict between those that are “included” and those that are “excluded” and as one of the negative effects of globalisation processes. The results suggest that police responses addressing only direct violence are ineffective, even contributing to increased tensions and polarisation, whereas strategies addressing cultural and structural violence are more suitable for this type of social urban conflict. Finally, recommendations for local youth policy are proposed to facilitate participation and inclusion of youth and as a tool for peaceful conflict transformation.
Resumo:
With a steady increase of regulatory requirements for business processes, automation support of compliance management is a field garnering increasing attention in Information Systems research. Several approaches have been developed to support compliance checking of process models. One major challenge for such approaches is their ability to handle different modeling techniques and compliance rules in order to enable widespread adoption and application. Applying a structured literature search strategy, we reflect and discuss compliance-checking approaches in order to provide an insight into their generalizability and evaluation. The results imply that current approaches mainly focus on special modeling techniques and/or a restricted set of types of compliance rules. Most approaches abstain from real-world evaluation which raises the question of their practical applicability. Referring to the search results, we propose a roadmap for further research in model-based business process compliance checking.
Resumo:
Given a reproducing kernel Hilbert space (H,〈.,.〉)(H,〈.,.〉) of real-valued functions and a suitable measure μμ over the source space D⊂RD⊂R, we decompose HH as the sum of a subspace of centered functions for μμ and its orthogonal in HH. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.
Resumo:
Stemmatology, or the reconstruction of the transmission history of texts, is a field that stands particularly to gain from digital methods. Many scholars already take stemmatic approaches that rely heavily on computational analysis of the collated text (e.g. Robinson and O’Hara 1996; Salemans 2000; Heikkilä 2005; Windram et al. 2008 among many others). Although there is great value in computationally assisted stemmatology, providing as it does a reproducible result and allowing access to the relevant methodological process in related fields such as evolutionary biology, computational stemmatics is not without its critics. The current state-of-the-art effectively forces scholars to choose between a preconceived judgment of the significance of textual differences (the Lachmannian or neo-Lachmannian approach, and the weighted phylogenetic approach) or to make no judgment at all (the unweighted phylogenetic approach). Some basis for judgment of the significance of variation is sorely needed for medieval text criticism in particular. By this, we mean that there is a need for a statistical empirical profile of the text-genealogical significance of the different sorts of variation in different sorts of medieval texts. The rules that apply to copies of Greek and Latin classics may not apply to copies of medieval Dutch story collections; the practices of copying authoritative texts such as the Bible will most likely have been different from the practices of copying the Lives of local saints and other commonly adapted texts. It is nevertheless imperative that we have a consistent, flexible, and analytically tractable model for capturing these phenomena of transmission. In this article, we present a computational model that captures most of the phenomena of text variation, and a method for analysis of one or more stemma hypotheses against the variation model. We apply this method to three ‘artificial traditions’ (i.e. texts copied under laboratory conditions by scholars to study the properties of text variation) and four genuine medieval traditions whose transmission history is known or deduced in varying degrees. Although our findings are necessarily limited by the small number of texts at our disposal, we demonstrate here some of the wide variety of calculations that can be made using our model. Certain of our results call sharply into question the utility of excluding ‘trivial’ variation such as orthographic and spelling changes from stemmatic analysis.
Resumo:
Equine insect bite hypersensitivity (IBH) is a seasonal IgE-mediated dermatosis caused by bites of insects of the genus Culicoides. A familial predisposition for the disease has been shown but, except for the MHC, the genes involved have not been identified so far. An immunogenomic analysis of IBH was performed in a model population of Old Kladruby horses, all living in the same environment. Clinical signs of IBH were used as phenotypic manifestation of IBH. Furthermore, total serum IgE levels were determined in the sera of these horses and used as an independent phenotypic marker for the immunogenetic analysis. Single nucleotide polymorphisms (SNPs) in candidate immunity-related genes were used for association analyses. Genotypes composed of two to five genes encoding interferon gamma -IFNG, transforming growth factor beta 1 -TGFB1, Janus kinase 2 -JAK2, thymic stromal lymphopoietin -TSLP, and involucrin -IVL were associated with IBH, indicating a role of the genes in the pathogenesis of IBH. These findings were supported by analysis of gene expression in skin biopsies of 15 affected and 15 unaffected horses. Two markers associated with IBH, IFNG and TGFB1, showed differences in mRNA expression in skin biopsies from IBH-affected and non-affected horses (p<0.05). Expression of the gene coding for the CD14 receptor molecule -CD14 was different in skin biopsies at p<0.06. When total IgE levels were treated as binary traits, genotypes of IGHE, ELA-DRA, and IL10/b were associated with this trait. When treated as a continuous trait, total IgE levels were associated with genes IGHE, FCER1A, IL4, IL4R, IL10, IL1RA, and JAK2. This first report on non-MHC genes associated with IBH in horses is thus supported by differences in expression of genes known to play a role in allergy and immunity.
Resumo:
Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.
Resumo:
The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.
Resumo:
The discovery of grid cells in the medial entorhinal cortex (MEC) permits the characterization of hippocampal computation in much greater detail than previously possible. The present study addresses how an integrate-and-fire unit driven by grid-cell spike trains may transform the multipeaked, spatial firing pattern of grid cells into the single-peaked activity that is typical of hippocampal place cells. Previous studies have shown that in the absence of network interactions, this transformation can succeed only if the place cell receives inputs from grids with overlapping vertices at the location of the place cell's firing field. In our simulations, the selection of these inputs was accomplished by fast Hebbian plasticity alone. The resulting nonlinear process was acutely sensitive to small input variations. Simulations differing only in the exact spike timing of grid cells produced different field locations for the same place cells. Place fields became concentrated in areas that correlated with the initial trajectory of the animal; the introduction of feedback inhibitory cells reduced this bias. These results suggest distinct roles for plasticity of the perforant path synapses and for competition via feedback inhibition in the formation of place fields in a novel environment. Furthermore, they imply that variability in MEC spiking patterns or in the rat's trajectory is sufficient for generating a distinct population code in a novel environment and suggest that recalling this code in a familiar environment involves additional inputs and/or a different mode of operation of the network.
Resumo:
Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.
Resumo:
We have developed a novel way to assess the mutagenicity of environmentally important metal carcinogens, such as nickel, by creating a positive selection system based upon the conditional expression of a retroviral transforming gene. The target gene is the v-mos gene in MuSVts110, a murine retrovirus possessing a growth temperature dependent defect in expression of the transforming gene due to viral RNA splicing. In normal rat kidney cells infected with MuSVts110 (6m2 cells), splicing of the MuSVts110 RNA to form the mRNA from which the transforming protein, p85$\sp{\rm gag-mos}$, is translated is growth-temperature dependent, occurring at 33 C and below but not at 39 C and above. This splicing "defect" is mediated by cis-acting viral sequences. Nickel chloride treatment of 6m2 cells followed by growth at 39 C, allowed the selection of "revertant" cells which constitutively express p85$\sp{\rm gag-mos}$ due to stable changes in the viral RNA splicing phenotype, suggesting that nickel, a carcinogen whose mutagenicity has not been well established, could induce mutations in mammalian genes. We also show by direct sequencing of PCR-amplified integrated MuSVts110 DNA from a 6m2 nickel-revertant cell line that the nickel-induced mutation affecting the splicing phenotype is a cis-acting 70-base duplication of a region of the viral DNA surrounding the 3$\sp\prime$ splice site. These findings provide the first example of the molecular basis for a nickel-induced DNA lesion and establish the mutagenicity of this potent carcinogen. ^
Resumo:
There have been numerous reports over the past several years on the ability of vitamin A analogs (retinoids) to modulate cell proliferation, malignant transformation, morphogenesis, and differentiation in a wide variety of cell types and organisms. Two families of nuclear retinoid-inducible, trans-acting, transcription-enhancing receptors that bear strong DNA sequence homology to thyroid and steroid hormone receptors have recently been discovered. The retinoic acid receptors (RARs) and retinoid X receptors (RXRs) each have at least three types designated $\alpha,$ $\beta,$ and $\gamma,$ which are encoded by separate genes and expressed in a tissue and cell type-specific manner. We have been interested in the mechanism by which retinoids inhibit tumor cell proliferation and induce differentiation. As a model system we have employed several murine melanoma cell lines (S91-C2, K1735P, and B16-F1), which are sensitive to the growth-inhibitory and differentiation-inducing effects of RA, as well as a RA-resistant subclone of one of the cell lines (S91-C154), in order to study the role of the nuclear RARs in these effects. The initial phase of this project consisted of the characterization of the expression pattern of the three known RAR and RXR types in the murine melanoma cell lines in order to determine whether any differences exist which may elucidate a role for any of the receptors in RA-induced growth inhibition and differentiation. The novel finding was made that the RAR-$\beta$ gene is rapidly induced from undetectable levels by RA treatment at the mRNA and protein level, and that the induction of RAR-$\beta$ by other biologically active retinoids correlated with their ability to inhibit the growth of the highly RA-sensitive S91-C2 cell line. This suggests a role for RAR-$\beta$ in the growth inhibiting effect of retinoids. The second phase of this project involves the stable expression of RAR-$\beta$ in the S91-C2 cells and the RAR-$\beta$ receptor-null cell line, K1735P. These studies have indicated an inverse correlation between RAR-$\beta$ expression and proliferation rate. ^
Resumo:
One of the central goals of neuroscience research is to determine how networks of neurons control and modify behavior. One of the most influential model systems for this kind of analysis is the siphon and gill withdrawal reflex of the marine mollusc A. californica. In response to tactile stimulation, the siphon displays 3 different responses: (1) a posterior pointing and leveling (flaring) of the siphon in response to tail stimulation (the siphon T response), (2) constriction and anterior pointing to head stimulation (the siphon H response) and (3) constriction and withdrawal between the animal's parapodia (the siphon S response). The siphon S response is pseudoconditioned by a noxious tail stimulus to resemble the siphon T response. Behavioral and combined behavioral/intracellular studies were conducted to determine the motor neuronal control of these behaviors and to search for mechanisms of siphon response transformation following pseudoconditioning. The present studies have found that the flaring component of pseudoconditioned siphon S responses occurs during mantle pumping (MP) triggered by noxious tail stimulation. Siphon stimulation also triggers MP, as recorded in neurons of the Interneuron II pattern generator which commands MP. The 4 LF$\rm\sb{SB}$ siphon motor neurons (SMNs) were found necessary and sufficient for the siphon T response, while SMNs RD$\rm\sb S$ and LD$\rm\sb{S1}$ were found necessary and sufficient for the siphon H response. Following pseudoconditioning, there is an increase in the number of evoked spikes to the test stimulus for the LF$\rm\sb{SB}$ cells and a decreased number for RD$\rm\sb S.$ Siphon flaring occurring during the pseudoconditioned response correlates with increased LF$\rm\sb{SB}$ activity during triggered MP cycles. This suggests that psuedoconditioning is in part due to reconfiguration of the motor outputs of the Interneuron II network. These results suggest that these defensive responses are controlled and patterned by a well-defined, finite set of motor neurons and interneurons (Interneuron II) that are dedicated to specific behavioral functions, but also have parallel distributed properties. ^