961 resultados para Mobile application
Resumo:
The need for low bit-rate speech coding is the result of growing demand on the available radio bandwidth for mobile communications both for military purposes and for the public sector. To meet this growing demand it is required that the available bandwidth be utilized in the most economic way to accommodate more services. Two low bit-rate speech coders have been built and tested in this project. The two coders combine predictive coding with delta modulation, a property which enables them to achieve simultaneously the low bit-rate and good speech quality requirements. To enhance their efficiency, the predictor coefficients and the quantizer step size are updated periodically in each coder. This enables the coders to keep up with changes in the characteristics of the speech signal with time and with changes in the dynamic range of the speech waveform. However, the two coders differ in the method of updating their predictor coefficients. One updates the coefficients once every one hundred sampling periods and extracts the coefficients from input speech samples. This is known in this project as the Forward Adaptive Coder. Since the coefficients are extracted from input speech samples, these must be transmitted to the receiver to reconstruct the transmitted speech sample, thus adding to the transmission bit rate. The other updates its coefficients every sampling period, based on information of output data. This coder is known as the Backward Adaptive Coder. Results of subjective tests showed both coders to be reasonably robust to quantization noise. Both were graded quite good, with the Forward Adaptive performing slightly better, but with a slightly higher transmission bit rate for the same speech quality, than its Backward counterpart. The coders yielded acceptable speech quality of 9.6kbps for the Forward Adaptive and 8kbps for the Backward Adaptive.
Resumo:
Handheld and mobile technologies have witnessed significant advances in functionality, leading to their widespread use as both business and social networking tools. Human-Computer Interaction and Innovation in Handheld, Mobile and Wearable Technologies reviews concepts relating to the design, development, evaluation, and application of mobile technologies. Studies on mobile user interfaces, mobile learning, and mobile commerce contribute to the growing body of knowledge on this expanding discipline.
Resumo:
Basic literacy skills are fundamental building blocks of education, yet for a very large number of adults tasks such as understanding and using everyday items is a challenge. While research, industry, and policy-making is looking at improving access to textual information for low-literacy adults, the literacy-based demands of today's society are continually increasing. Although many community-based organizations offer resources and support to adults with limited literacy skills, current programs have difficulties reaching and retaining those that would benefit most from them. To address these challenges, the National Research Council of Canada is proposing a technological solution to support literacy programs and to assist low-literacy adults in today's information-centric society: ALEX© – Adult Literacy support application for EXperiential learning. ALEX© has been created together with low-literacy adults, following guidelines for inclusive design of mobile assistive tools. It is a mobile language assistant that is designed to be used both in the classroom and in daily life, in order to help low-literacy adults become increasingly literate and independent.
Resumo:
Given evidence of effects of mobile phone use on driving, and also legislation, many careful drivers refrain from answering their phones when driving. However, the distracting influence of a call on driving, even in the context of not answering, has not been examined. Furthermore, given that not answering may be contrary to an individual’s normal habits, this study examined whether distraction caused by the ignored call varies according to normal intention to answer whilst driving. That is, determining whether the effect is more than a simple matter of noise distraction. Participants were 27 young drivers (18-29 years), all regular mobile users. A Theory of Planned Behaviour questionnaire examined predictors of intention to refrain from answering calls whilst driving. Participants provided their mobile phone number and were instructed not to answer their phone if it were to ring during a driving simulation. The simulation scenario had seven hazards (e.g. car pulling out, pedestrian crossing) with three being immediately preceded by a call. Infractions (e.g. pedestrian collisions, vehicle collisions, speed exceedances) were significantly greater when distracted by call tones than with no distraction. Lower intention to ignore calls whilst driving correlated with a larger effect of distraction, as was feeling unable to control whether one answered whilst driving (Perceived Behavioural Control). The study suggests that even an ignored call can cause significantly increased infractions in simulator driving, with pedestrian collisions and speed exceedances being striking examples. Results are discussed in relation to cognitive demands of inhibiting normal behaviour and to drivers being advised to switch phones off whilst driving.
Resumo:
We observed an anomaly in the human electroencephalogram (EEG) associated with exposure to terrestrial trunked radio (TETRA) Radiofrequency Fields (RF). Here, we characterize the time and frequency components of the anomaly and demonstrate that it is an artefact caused by TETRA RF interfering with the EEG recording equipment and not by any direct or indirect effect on the brain.
Resumo:
As mobile technologies continue to penetrate increasingly diverse domains of use, we accordingly need to understand the feasibility of different interaction technologies across such varied domains. This case study describes an investigation into whether speechbased input is a feasible interaction option for use in a complex, and arguably extreme, environment of use – that is, lobster fishing vessels. We reflect on our approaches to bringing the “high seas” into lab environments for this purpose, comparing the results obtained via our lab and our field studies. Our hope is that the work presented here will go some way to enhancing the literature in terms of approaches to bringing complex real-world contexts into lab environments for the purpose of evaluating the feasibility of specific interaction technologies.
Resumo:
This article developed as part of a dialogue between the two authors. The dialogue was sparked off by MARLEY's response to a seminar presentation by GILLIGAN. In keeping with its origins we have retained the dialogue format. The article focuses on two sets of images—one a still image taken by a photojournalist, the other a sequence of stills taken by one of the authors. The authors use these images to explore the question "what imbues an image with narrative content?" and to explore the possibilities for developing a positive visual representation which promotes the idea of open borders. The article draws on linguistic theory to explore the grammar of visual narrative and relates this to the issue of the visual representation of immigration in contemporary Europe.
Resumo:
In-Motes Bins is an agent based real time In-Motes application developed for sensing light and temperature variations in an environment. In-Motes is a mobile agent middleware that facilitates the rapid deployment of adaptive applications in Wireless Sensor Networks (WSN's). In-Motes Bins is based on the injection of mobile agents into the WSN that can migrate or clone following specific rules and performing application specific tasks. Using In-Motes we were able to create and rapidly deploy our application on a WSN consisting of 10 MICA2 motes. Our application was tested in a wine store for a period of four months. In this paper we present the In-Motes Bins application and provide a detailed evaluation of its implementation. © 2007 IEEE.
Resumo:
Adult illiteracy rates are alarmingly high worldwide. The portability, affordability, and ease of use of mobile (or handheld) devices offer a realistic opportunity to provide novel, context-sensitive literacy resources to adults with limited literacy skills. To this end, we developed the concept of ALEX – a mobile Adult Literacy support application for EXperiential learning (Lumsden et al., 2005). On the basis of a medium-fidelity prototype of this application, we conducted an evaluation of ALEX using participants from our in tended user group. This evaluation had two goals: (a) to assess the usefulness of the ALEX concept and the usability of its current design; and (b) to reflect on the appropriateness of our evaluation process given the literacy-related needs of our participants. This paper outlines our approach to this evaluation as well as the results we obtained and our reflections on the process.
Resumo:
There are around 285 million visually impaired people worldwide, and around 370,000 people are registered as blind or partially sighted in the UK. Ongoing advances in information technology (IT) are increasing the scope for IT-based mobile assistive technologies to facilitate the independence, safety, and improved quality of life of the visually impaired. Research is being directed at making mobile phones and other handheld devices accessible via our haptic (touch) and audio sensory channels. We review research and innovation within the field of mobile assistive technology for the visually impaired and, in so doing, highlight the need for successful collaboration between clinical expertise, computer science, and domain users to realize fully the potential benefits of such technologies. We initially reflect on research that has been conducted to make mobile phones more accessible to people with vision loss. We then discuss innovative assistive applications designed for the visually impaired that are either delivered via mainstream devices and can be used while in motion (e.g., mobile phones) or are embedded within an environment that may be in motion (e.g., public transport) or within which the user may be in motion (e.g., smart homes). © 2013 Elsevier Inc.
Resumo:
The article describes the application of mobile communication technology for enhancing of educational process.
Resumo:
In a pilot project an optimized mobile latent heat storage based on a system available on the market has been tested at Fraunhofer Institute for Environmental, Safety and Energy Technology. Initially trials were conducted with the aim of optimizing the process of charging and discharging. A specifically constructed test rig at the incineration trials centre at the institute allowed charging and discharging procedures of the mobile latent heat storage with adjustable parameters. In addition an evaluation model was constructed to further optimize the heat exchanger systems. In conclusion the prototype of the mobile latent heat storage was tested in practical operation. The economic and technical feasibility of heat transportation was shown if not utilized waste heat is available. © 2014 The Authors.
Resumo:
A real-time adaptive resource allocation algorithm considering the end user's Quality of Experience (QoE) in the context of video streaming service is presented in this work. An objective no-reference quality metric, namely Pause Intensity (PI), is used to control the priority of resource allocation to users during the scheduling process. An online adjustment has been introduced to adaptively set the scheduler's parameter and maintain a desired trade-off between fairness and efficiency. The correlation between the data rates (i.e. video code rates) demanded by users and the data rates allocated by the scheduler is taken into account as well. The final allocated rates are determined based on the channel status, the distribution of PI values among users, and the scheduling policy adopted. Furthermore, since the user's capability varies as the environment conditions change, the rate adaptation mechanism for video streaming is considered and its interaction with the scheduling process under the same PI metric is studied. The feasibility of implementing this algorithm is examined and the result is compared with the most commonly existing scheduling methods.
Resumo:
Aim: To validate the accuracy and repeatability of a mobile app reading speed test compared with the traditional paper version. Method: Twenty-one subjects wearing their full refractive correction glasses read 14 sentences of decreasing print size between 1.0 and -0.1 logMAR, each consisting of 14 words (Radner reading speed test) at 40 cm with a paper-based chart and twice on iPad charts. Time duration was recorded with a stop watch for the paper chart and on the App itself for the mobile chart allowing critical print size (CPS) and optimal reading speed (ORS) to be derived objectively. Results: The ORS was higher for the mobile app charts (194±29 wpm; 195±25 wpm) compared with the paper chart (166±20 wpm; F=57.000, p<0.001). The CPS was lower for the mobile app charts (0.17±0.20 logMAR; 0.18±0.17 logMAR) compared with the paper chart (0.25±0.17 logMAR; F=5.406, p=0.009). The mobile app test had a mean difference repeatability of 0.30±22.5 wpm, r=0.917 for ORS, and a CPS of 0.0±0.2 logMAR, r=0.769. Conclusions: Repeatability of the app reading speed test is as good (ORS) or better (CPS) than previous studies on the paper test. While the results are not interchangeable with paper-based charts, mobile app tablet-based tests of reading speed are reliable and rapid to perform, with the potential to capture functional visual ability in research studies and clinical practice.
Resumo:
BACKGROUND: Contrast detection is an important aspect of the assessment of visual function; however, clinical tests evaluate limited spatial frequencies and contrasts. This study validates the accuracy and inter-test repeatability of a swept-frequency near and distance mobile app Aston contrast sensitivity test, which overcomes this limitation compared to traditional charts. METHOD: Twenty subjects wearing their full refractive correction underwent contrast sensitivity testing on the new near application (near app), distance app, CSV-1000 and Pelli-Robson charts with full correction and with vision degraded by 0.8 and 0.2 Bangerter degradation foils. In addition repeated measures using the 0.8 occluding foil were taken. RESULTS: The mobile apps (near more than distance, p = 0.005) recorded a higher contrast sensitivity than printed tests (p < 0.001); however, all charts showed a reduction in measured contrast sensitivity with degradation (p < 0.001) and a similar decrease with increasing spatial frequency (interaction > 0.05). Although the coefficient of repeatability was lowest for the Pelli-Robson charts (0.14 log units), the mobile app charts measured more spatial frequencies, took less time and were more repeatable (near: 0.26 to 0.37 log units; distance: 0.34 to 0.39 log units) than the CSV-1000 (0.30 to 0.93 log units). The duration to complete the CSV-1000 was 124 ± 37 seconds, Pelli-Robson 78 ± 27 seconds, near app 53 ± 15 seconds and distance app 107 ± 36 seconds. CONCLUSIONS: While there were differences between charts in contrast levels measured, the new Aston near and distance apps are valid, repeatable and time-efficient method of assessing contrast sensitivity at multiple spatial frequencies.