888 resultados para Mitochondrial inheritance
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The previous uncertain placement of Lysapsus and Pseudis within the neobatrachians was recently resolved by molecular and morphological studies, which supported them as members of the Hylinae subfamily. Their inter- and intrageneric relationships, however, have long been under debate and no studies shed light on these questions. Aiming to elucidate such questions, this paper used 3.2 kb comprising the mitochondrial genes 12S, tRNA valine, 16S and cytochrome b, and the nuclear exon 1 coding for rhodopsin, to all representatives of both genera (except to two subspecies of Pseudis paradoxa). The results identified three major clades: the clade 1 was composed by Lysapsus species and subspecies; clade 2 included the subspecies of the Pseudis paradoxa (Pseudis paradoxa paradoxa, P. paradoxa platensis and P. paradoxa occidentalis), P. fusca, P. bolbodactyla and P. tocantins, and clade 3 was composed by Pseudis southern Brazil species (Pseudis cardosoi and P. minuta). As closely related taxa we found Pseudis minuta + P. cardosoi; P. tocantins + P. fusca, and the subspecies within each genus. Evidence that Pseudis is not monophyletic with respect to Lysapsus was found and we suggest Lysapsus to be a junior synonym of Pseudis. Based on pair-wise comparison among gene sequences, we also suggest that the subspecies of Pseudis paradoxa and Lysapsus limellum must be considered as full species. (c) the Willi Hennig Society 2007.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A herança da resistência ao oídio na cultivar de ervilha MK-10 e alguns aspectos histológicos da infecção foram estudados. Para o estudo da herança, as gerações F1, F2, retrocuzamentos e geração F3 de MK-10 com duas populações suscetíveis foram avaliadas. Nas avaliações histológicas observou-se a porcentagem de conídios germinados, porcentagem de conídios que formaram apressório, porcentagem de conídios que estabeleceram colônia e número de haustórios por colônia. Para comparar as razões de segregação obtidas no estudo da herança da resistência, adotou-se o teste do Qui-quadrado (X²) e para os dados das análises histológicas, utilizou-se o teste Tukey a 5% de probabilidade. Concluiu-se que a resistência de MK-10 ao oídio é devida a um par de alelos recessivos e que a resistência é expressa na fase de pré-penetração, completada por uma morte celular localizada pós-penetração, característica da presença do par de alelos recessivos er1er1.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A case of primary myiasis in a dog caused by Phaenicia eximia (Robineau-Desvoidy) in Brazil is presented. A young and healthy female dog, Canis familiaris, approximate to 10 d old and still under maternal care, was found to have several eggs and Is: instars larvae in its abdomen and urogenital regions. Samples were collected in Campinas, São Paulo, and transferred to the laboratory for rearing and identification. A comparative analysis of the mitochondrial DNA (mtDNA) with 12 restriction enzymes in 2 sampled populations of P. eximia collected in different hosts (live dog and bovine carcass) and in the same locality revealed that 4, EcoRI, EcoRV, HaeIII, and MspI were suitable for detecting mtDNA markers in the 2 populations.
Resumo:
Milk yield, fat yield, and fat percentage during the first three lactations were studied using New York Holsteins that were milked twice daily over a 305-d, mature equivalent lactation. Those data were used to estimate variances from direct and maternal genetic effects, cytoplasmic effects, sire by herd interaction, and cow permanent environmental effects. Cytoplasmic line was traced to the last female ancestor using DHI records from 1950 through 1991. Records were 138,869 lactations of 68,063 cows calving from 1980 through 1991. Ten random samples were based on herd code. Samples averaged 4926 dams and 2026 cytoplasmic lines. Model also included herd-year-seasons as fixed effects and genetic covariance for direct-maternal effects. Mean estimates of the effects of maternal genetic variances and direct-maternal covariances, as fractions of phenotypic variances, were 0.008 and 0.007 for milk yield, 0.010 and 0.010 for fat yield, and 0.006 and 0.025 for fat percentage, respectively. Average fractions of variance from cytoplasmic line were 0.011, 0.008, and 0.009 for milk yield, fat yield, and fat percentage. Removal of maternal genetic effects and covariance for maternal direct effects from the model increased the fraction of direct genetic variance by 0.014, 0.021, and 0.046 for milk yield, fat yield, and fat percentage; little change in the fraction was due to cytoplasmic line. Exclusion of cytoplasmic effects from the model increased the ratio of additive direct genetic variance to phenotypic variance by less than 2%. Similarly, when sire by herd interaction was excluded, the ratio of direct genetic variance to phenotypic variance increased 1% or less.
Resumo:
Monocrotaline is a pyrrolizidine alkaloid present in plants of the Crotalaria species, which causes cytotoxicity and genotoxicity, including hepatotoxicity in animals and humans. It is metabolized by cytochrome P-450 in the liver to the alkylating agent dehydromonocrotaline. We evaluated the effects of monocrotaline and its metabolite on respiration, membrane potential and ATP levels in isolated rat liver mitochondria, and on respiratory chain complex I NADH oxidase activity in submitochondrial particles. Dehydromonocrotaline, but not the parent compound, showed a concentration-dependent inhibition of glutamate/malate-supported state 3 respiration (respiratory chain complex 1), but did not affect succinate-supported respiration (complex II). Only dehydromonocrotaline dissipated mitochondrial membrane potential, depleted ATP, and inhibited complex I NADH oxidase activity (IC50 = 62.06 mu M) through a non-competitive type of inhibition (K-I = 8.1 mu M). Therefore, dehydromonocrotaline is an inhibitor of the activity of respiratory chain complex I NADH oxidase, an action potentially accounting for the well-documented monocrotaline's hepatotoxicity to animals and humans. The mechanism probably involves change of the complex I conformation resulting from modification of cysteine thiol groups by the metabolite. (c) 2007 Elsevier Ltd. All rights reserved.