883 resultados para Mitochondrial DNA
Resumo:
In this study we analyzed the phylogeographic pattern and historical demography of an endemic Atlantic forest (AF) bird, Basileuterus leucoblepharus, and test the influence of the last glacial maximum (LGM) on its population effective size using coalescent simulations. We address two main questions: (i) Does B. leucoblepharus present population genetic structure congruent with the patterns observed for other AF organisms? (ii) How did the LGM affect the effective population size of B. leucoblepharus? We sequenced 914 bp of the mitochondrial gene cytochrome b and 512 bp of the nuclear intron 5 of beta-fibrinogen of 62 individuals from 15 localities along the AF. Both molecular markers revealed no genetic structure in B. leucoblepharus. Neutrality tests based on both loci showed significant demographic expansion. The extended Bayesian skyline plot showed that the species seems to have experienced demographic expansion starting around 300,000 years ago, during the late Pleistocene. This date does not coincide with the LGM and the dynamics of population size showed stability during the LGM. To further test the effect of the LGM on this species, we simulated seven demographic scenarios to explore whether populations suffered specific bottlenecks. The scenarios most congruent with our data were population stability during the LGM with bottlenecks older than this period. This is the first example of an AF organism that does not show phylogeographic breaks caused by vicariant events associated to climate change and geotectonic activities in the Quaternary. Differential ecological, environmental tolerances and habitat requirements are possibly influencing the different evolutionary histories of these organisms. Our results show that the history of organism diversification in this megadiverse Neotropical forest is complex. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
Samples from seven different locations of the genus Pimelodella were genetically examined, two caves (exclusively subterranean, upper Tocantins River and Sao Francisco River) and five epigean (from upper Parana River basin). Cytogenetic analyses revealed the same diploid number (2n=46) for all species besides similarities in both number and location of nucleolar organizer regions and C bands. FISH with 5S rDNA probes and CMA(3) staining indicated significant differences among the studied species. Application of PCR-RFLP in ATPase 6 and 8 mitochondrial genes allowed building a minimum evolution phenogram identifying the close evolutionary relationship among groups. Both chromosomal and molecular data were useful to infer the relationships among studied Pimelodella species.
Resumo:
Leberâs hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by a rapid loss of central vision and optic atrophy, due to the selective degeneration of retinal ganglion cells. The age of onset is around 20, and the degenerative process is fast and usually the second eye becomes affected in weeks or months. Even if this pathology is well known and has been well characterized, there are still open questions on its pathophysiology, such as the male prevalence, the incomplete penetrance and the tissue selectivity. This maternally inherited disease is caused by mutations in mitochondrial encoded genes of NADH ubiquinone oxidoreductase (complex I) of the respiratory chain. The 90% of LHON cases are caused by one of the three common mitochondrial DNA mutations (11778/ND4, 14484/ND6 and 3460/ND1) and the remaining 10% is caused by rare pathogenic mutations, reported in literature in one or few families. Moreover, there is also a small subset of patients reported with new putative pathogenic nucleotide changes, which awaits to be confirmed. We here clarify some molecular aspects of LHON, mainly the incomplete penetrance and the role of rare mtDNA mutations or variants on LHON expression, and attempt a possible therapeutic approach using the cybrids cell model. We generated novel structural models for mitochondrial encoded complex I subunits and a conservation analysis and pathogenicity prediction have been carried out for LHON reported mutations. This in-silico approach allowed us to locate LHON pathogenic mutations in defined and conserved protein domains and can be a useful tool in the analysis of novel mtDNA variants with unclear pathogenic/functional role. Four rare LHON pathogenic mutations have been identified, confirming that the ND1 and ND6 genes are mutational hot spots for LHON. All mutations were previously described at least once and we validated their pathogenic role, suggesting the need for their screening in LHON diagnostic protocols. Two novel mtDNA variants with a possible pathogenic role have been also identified in two independent branches of a large pedigree. Functional studies are necessary to define their contribution to LHON in this family. It also been demonstrated that the combination of mtDNA rare polymorphic variants is relevant in determining the maternal recurrence of myoclonus in unrelated LHON pedigrees. Thus, we suggest that particular mtDNA backgrounds and /or the presence of specific rare mutations may increase the pathogenic potential of the primary LHON mutations, thereby giving rise to the extraocular clinical features characteristic of the LHON âplusâ phenotype. We identified the first molecular parameter that clearly discriminates LHON affected individuals from asymptomatic carriers, the mtDNA copy number. This provides a valuable mechanism for future investigations on variable penetrance in LHON. However, the increased mtDNA content in LHON individuals was not correlated to the functional polymorphism G1444A of PGC-1 alpha, the master regulator of mitochondrial biogenesis, but may be due to gene expression of genes involved in this signaling pathway, such as PGC-1 alpha/beta and Tfam. Future studies will be necessary to identify the biochemical effects of rare pathogenic mutations and to validate the novel candidate mutations here described, in terms of cellular bioenergetic characterization of these variants. Moreover, we were not able to induce mitochondrial biogenesis in cybrids cell lines using bezafibrate. However, other cell line models are available, such as fibroblasts harboring LHON mutations, or other approaches can be used to trigger the mitochondrial biogenesis.
Resumo:
ABSTRACT Given the decline of shallow-water red coral populations resulting from over-exploitation and mass mortality events, deeper populations below 50 metres depth (mesophotic populations) are currently the most harvested; unfortunately, very little is known about their biology and ecology. The persistence of these populations is tightly linked to their adult density, reproductive success, larval dispersal and recruitment. Moreover, for their conservation, it is paramount understand processes such as connectivity within and among populations. Here, for the first time, genetic variability and structuring of Corallium rubrum populations collected in the Tyrrhenian Sea ranging from 58 to 118 metres were analyzed using ten microsatellite loci and two mitochondrial markers (mtMSH and MtC). The aims of the work were 1) to examine patterns of genetic diversity within each geographic area (Elba, Ischia and Praiano) and 2) to define population structuring at different spatial scales (from tens of metres to hundreds of kilometres). Based on microsatellite data set, significant deviations from Hardy-Weinberg equilibrium due to elevated heterozygote deficiencies were detected in all samples, probably related to the presence of null alleles and/or inbreeding, as was previously observed in shallow-water populations. Moreover, significant levels of genetic differentiation were observed at all spatial scale, suggesting a recent isolation of populations. Biological factors which act at small spatial scale and/or abiotic factors at larger scale (e.g. summer gyres or absence of suitable substrata for settlement) could determine this genetic isolation. Using mitochondrial markers, significant differences were found only at wider scale (between Tuscany and Campania regions). These results could be related to the different mutation rate of the molecular makers or to the occurrence of some historical links within regions. A significant isolation by distance pattern was then observed using both data sets, confirming the restricted larval dispersal capability of the species. Therefore, the hypothesis that deeper populations may act as a source of larvae helping recovery of threatened shallow-water populations is not proved. Conservation strategies have to take into account these results, and management plans of deep and currently harvested populations have to be defined at a regional or sub regional level, similarly to shallow-water populations. Nevertheless, further investigations should be needed to understand better the genetic structuring of this species in the mesophotic zone, e.g. extending studies to other Mediterranean deep-water populations.
Resumo:
Down syndrome (DS) or Trisomy 21, occurring in 1/700 and 1/1000 livebirths, is the most common genetic disorder, characterized by a third copy of the human chromosome 21 (Hsa21). DS is associated with various defects, including congenital heart diseases, craniofacial abnormalities, immune system dysfunction, mental retardation (MR), learning and memory deficiency. The phenotypic features in DS are a direct consequence of overexpression of genes located within the triplicated region on Hsa21. In addition to developmental brain abnormalities and disabilities, people with DS by the age of 30-40 have a greatly increased risk of early-onset of Alzheimer’s disease (AD) and an apparent tendency toward premature aging. Many of the immunological anomalies in DS can be enclosed in the spectrum of multiple signs of early senescence. People with DS have an increased vulnerability to oxidative damage and many factors, including amyloid beta protein (Abeta), genotype ApoE4, oxidative stress, mutations in mitochondrial DNA (mtDNA), impairment of antioxidant enzymes, accelerated neuronal cell apoptosis, are related to neuronal degeneration and early aging in DS. SUBJECTS and METHODS: Since 2007 a population of 50 adolescents and adults with DS, 26 males and 24 females (sex-ratio: M/F = 1.08), has been evaluated for the presence of neurological features, biomarkers and genetic factors correlated with neuronal degeneration and premature aging. The control group was determined by the mother and the siblings of the patients. A neuropsychiatric evaluation was obtained from all patients. The levels of thyroid antibodies (antiTg and antiTPO) and of some biochemical markers of oxidative stress, including homocysteine (tHcy), uric acid, cobalamin, folate were measured. All patients, the mother and the siblings were genotyped for ApoE gene. RESULTS: 40% of patients, with a mild prevalence of females aged between 19 and 30 years, showed increased levels of antiTg and antiTPO. The levels of tHcy were normal in 52% patients and mildly increased in 40%; hyperomocysteinemia was associated with normal levels of thyroid antibodies in 75% of patients (p<0.005). The levels of uric acid were elevated in 26%. Our study showed a prevalence of severe MR in patients aged between 1-18 years and over 30 years. Only 3 patients, 2 females and one male, over 30 years of age, showed dementia. According to the literature, the rate of Down left-handers was high (25%) compared to the rest of population and the laterality was associated with increased levels of thyroid antibodies (70%). 21.5% of patients were ApoE4 positive (ApoE4+) with a mean/severe MR. CONCLUSIONS: Until now no biochemical evidence of oxidative damage and no deficiency or alteration of antioxidant function in our patients with DS were found. mtDNA sequencing could show some mutations age-related and associated with oxidative damage and neurocognitive decline in the early aging of DS. The final aim is found predictive markers of early-onset dementia and a target strategy for the prevention and the treatment of diseases caused by oxidative stress. REFERENCES: 1) Rachidi M, Lopes C: “Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways.” - Eur J Paediatr Neurol. May;12(3):168-82 (2008). 2) Lott IT, Head E: “Down syndrome and Alzheimer's disease: a link between development and aging.” - Ment Retard Dev Disabil Res Rev, 7(3):172-8 (2001). 3) Lee HC, Wei YH: “Oxidative Stress, Mitochondrial DNA Mutation, and Apoptosis in Aging.” - Exp Biol Med (Maywood), May;232(5):592-606 (2007).
Resumo:
In this study we have analysed the genetic variability in ca. 700 samples belonging to six species of genus Lepus using maternal and biparental molecular markers (mitochondrial DNA, microsatellites, Single Nucleotide Polimorphisms). We aimed to reconstruct the phylogenetic relationships of species of hares living in Europe, and assess the occurrence of hybridization between the European hare Lepus europaeus and the Italian hare Lepus corsicanus. Results showed a deep genetic differentiation and absence of hybridization between L. corsicanus and L. europaeus, confirming that they are distinct and distantly related biological species. In contrast, we showed small genetic distances and a close phylogenetic relationship between the Italian hare and Cantabrian hare L. castroviejoi, which suggest a deeper evaluation of their taxonomic status. Populations of L. corsicanus are geographically differentiated. In particular, the peninsular and Sicilian populations of Italian hares are sharply genetically distinct, which calls for avoiding any translocation between Italy and Sicily. Information on genetic variability and population structure is being used to implement the Italian Action Plan for L. corsicanus.
Resumo:
The Neolithic is characterized by the transition from a subsistence economy, based on hunting and gathering, to one based on food producing. This important change was paralleled by one of the most significant demographic increase in the recent history of European populations. The earliest Neolithic sites in Europe are located in Greece. However, the debate regarding the colonization route followed by the Middle-eastern farmers is still open. Based on archaeological, archaeobotanical, craniometric and genetic data, two main hypotheses have been proposed. The first implies the maritime colonization of North-eastern Peloponnesus from Crete, whereas the second points to an island hopping route that finally brought migrants to Central Greece. To test these hypotheses using a genetic approach, 206 samples were collected from the two Greek regions proposed as the arrival point of the two routes (Korinthian district and Euboea). Expectations for each hypothesis were compared with empirical observations based on the analysis of 60 SNPs and 26 microsatellite loci of Y-chromosome and mitochondrial DNA hypervariable region I. The analysis of Y-chromosome haplogroups revealed a strong genetic affinity of Euboea with Anatolian and Middle-eastern populations. The inferences of the time since population expansion suggests an earlier usage of agriculture in Euboea. Moreover, the haplogroup J2a-M410, supposed to be associated with the Neolithic transition, was observed at higher frequency and variance in Euboea showing, for both these parameters, a decreasing gradient moving from this area. The time since expansion estimates for J2a-M410 was found to be compatible with the Neolithic and slightly older in Euboea. The analysis of mtDNA resulted less informative. However, a higher genetic affinity of Euboea with Anatolian and Middle-eastern populations was confirmed. These results taken as a whole suggests that the most probable route followed by Neolithic farmers during the colonization of Greece was the island hopping route.
Resumo:
The Geoffroy’s bat Myotis emarginatus is mainly present in southern, south-eastern and central Europe (Červerný, 1999) and is often recorded from northern Spain (Quetglas, 2002; Flaquer et al., 2004). It has demonstrated the species’ preference for forest. Myotis capaccinii, confined to the Mediterranean (Guille´n, 1999), is classified as ‘vulnerable’ on a global scale (Hutson, Mickleburgh & Racey, 2001). In general, the species preferred calm waters bordered by well-developed riparian vegetation and large (> 5 m) inter-bank distances (Biscardi et al. 2007). In this study we present the first results about population genetic structure of these two species of genus Myotis. We used two methods of sampling: invasive and non-invasive techniques. A total of 323 invasive samples and a total of 107 non-invasive samples were collected and analyzed. For Myotis emarginatus we have individuated for the first time a set of 7 microsatellites, which can work on this species, started from a set developed on Myotis myotis (Castella et al. 2000). We developed also a method for analysis of non-invasive samples, that given a good percentage of positive analyzed samples. The results have highlighted for the species Myotis emarginatus the presence on the European territory of two big groups, discovered by using the microsatellites tracers. On this species, 33 haplotypes of Dloop have been identified, some of them are presented only in some colonies. We identified respectively 33 haplotypes of Dloop and 10 of cytB for Myotis emarginatus and 25 of dloop and 15 of cytB for Myotis capaccinii. Myotis emarginatus’ results, both microsatellites and mtDNA, show that there is a strong genetic flow between different colonies across Europe. The results achieved on Myotis capaccinii are very interesting, in this case either for the microsatellites or the mitochondrial DNA sequences, and it has been highlighted a big difference between different colonies.
Resumo:
This study poses as its objective the genetic characterization of the ancient population of the Great White shark, Carcharodon carcharias, L.1758, present in the Mediterranean Sea. Using historical evidence, for the most part buccal arches but also whole, stuffed examples from various national museums, research institutes and private collections, a dataset of 18 examples coming from the Mediterranean Sea has been created, in order to increase the informations regarding this species in the Mediterranean. The importance of the Mediterranean provenance derives from the fact that a genetic characterization of this species' population does not exist, and this creates gaps in the knowledge of this species in the Mediterranean. The genetic characterization of the individuals will initially take place by the extraction of the ancient DNA and the analysis of the variations in the sequence markers of the mitochondrial DNA. This approach has allowed the genetic comparison between ancient populations of the Mediterranean and contemporary populations of the same geographical area. In addition, the genetic characterization of the population of white sharks of the Mediterranean, has allowed a genetic comparison with populations from global "hot spots", using published sequences in online databases (NCBI, GenBank). Analyzing the variability of the dataset, both in terms space and time, I assessed the evolutionary relationships of the Mediterranean population of Great Whites with the global populations (Australia/New Zealand, South Africa, Pacific USA, West Atlantic), and the temporal trend of the Mediterranean population variability. This method based on the sequencing of two portions of mitochondrial DNA genes, markers showed us how the population of Great White Sharks in the Mediterranean, is genetically more similar to the populations of the Australia Pacific ocean, American Pacific Ocean, rather than the population of South Africa, and showing also how the population of South Africa is abnormally distant from all other clusters. Interestingly, these results are inconsistent with the results from tagging of this species. In addition, there is evidence of differences between the ancient population of the Mediterranean with the modern one. This differentiation between the ancient and modern population of white shark can be the result of events impacting on this species occurred over the last two centuries.
Resumo:
Diseases due to mutations in mitochondrial DNA probably represent the most common form of metabolic disorders, including cancer, as highlighted in the last years. Approximately 300 mtDNA alterations have been identified as the genetic cause of mitochondrial diseases and one-third of these alterations are located in the coding genes for OXPHOS proteins. Despite progress in identification of their molecular mechanisms, little has been done with regard to the therapy. Recently, a particular gene therapy approach, namely allotopic expression, has been proposed and optimized, although the results obtained are rather controversial. In fact, this approach consists in synthesis of a wild-type version of mutated OXPHOS protein in the cytosolic compartment and in its import into mitochondria, but the available evidence is based only on the partial phenotype rescue and not on the demonstration of effective incorporation of the functional protein into respiratory complexes. In the present study, we took advantage of a previously analyzed cell model bearing the m.3571insC mutation in MTND1 gene for the ND1 subunit of respiratory chain complex I. This frame-shift mutation induces in fact translation of a truncated ND1 protein then degraded, causing complex I disassembly, and for this reason not in competition with that allotopically expressed. We show here that allotopic ND1 protein is correctly imported into mitochondria and incorporated in complex I, promoting its proper assembly and rescue of its function. This result allowed us to further confirm what we have previously demonstrated about the role of complex I in tumorigenesis process. Injection of the allotopic clone in nude mice showed indeed that the rescue of complex I assembly and function increases tumor growth, inducing stabilization of HIF1α, the master regulator of tumoral progression, and consequently its downstream gene expression activation.
Resumo:
Im Rahmen dieser Doktorarbeit wurde in zwei Schwerpunktanalysen mit eine Teil- und Gesamtdatensatz die Untersuchung der Hybridisierung zwischen den beiden Microcebus-Arten M. murinus und M. griseorufus im Ökoton Südostmadagaskars umfangreich und vertieft untersucht. Für die genetischen Analysen wurden die maternal vererbte mitochondriale Hypervariable Region I (HVR 1) und neun nukleäre biparental vererbte Mikrosatellitenmarker eingesetzt. Als weiterer Datensatz wurden morphometrische Daten verwendet. Für die erste Schwerpunktanalyse wurde ein bereits vorhandener Teildatensatz (Hapke 2005 & Gligor 2006) mit Daten von insgesamt 162 Individuen aus neun Populationen der Dornbuschzone, der Übergangswaldzone und des Küstenwaldgebietes eingesetzt. In der zweiten Schwerpunktanalyse wurde eine umfangreiche Untersuchung der Microcebus griseoruus-M. murinus- Hybridzone vorgenommen. Für diese detaillierte Charakterisierung der Hybridzone wurde eine ausgedehnte und fein auflösende Probennahme in einem als Kernzone definierten Bereich, der die gesamte Übergangswaldzone und die dazu benachbarten Dornbuschgebiete umfasste, durchgeführt. Die morphometrischen und genetischen Daten der neu beprobten Individuen dieser Kernzone wurden mit den Daten des Teildatensatzes und weiteren Daten aus Küstenwaldpopulationen (Hapke 2005) zu einem Gesamtdatensatz zusammengefasst. Die Integration des Teildatensatzes in den Gesamtdatensatz erforderte umfassende und zeitintensive Labor- und Analysearbeiten, die im Rahmen dieser Doktorarbeit durchgeführt wurden. Der Gesamtdatensatz umfasste insgesamt 569 Individuen der Gattung Microcebus aus 29 Untersuchungsstandorten. Die mit beiden Datensätzen durchgeführte Analyse morphometrischer Daten zeigte deutlich, dass die Mehrzahl der Individuen aus der Übergangswaldzone einen intermediären Morphotyp aufweist. Durch die mit den Daten des Teildatensatzes durchgeführten Bayes’schen Clusteranalysen und Assignment-Tests, das vornehmlich in den Populationen der Übergangszone beobachtete signifikante Kopplungsungleichgewicht und Heterozygotendefizit, die festgestellte Verteilung der mitochondrialen Haplotypen und das kontrastierende Muster zwischen nukleären Mikrosatellitengenotypen und mitochondrialen Haplotypen in den Übergangswaldpopulationen konnte erstmals das Vorkommen einer Hybridzone zwischen Microcebus-Arten wissenschaftlich fundiert festgestellt werden. Die Ergebnisse dieser Schwerpunktanalyse wurden in der Fachzeitschrift Molecular Ecology publiziert (Gligor et al. 2009). Die in der ersten Schwerpunktanalyse festgestellte Hybridzone konnte durch die zweite Schwerpunktanalyse mit den genetischen und morphometrischen Daten des Gesamtdatensatzes nicht nur bestätigt werden, sondern auch auf die gesamte Übergangswaldzone erweitert werden. Ferner wurden starke Hinweise auf eine Hybridisierung beider Microcebus-Arten an einigen Dornbuschstandorten der Kernzone gefunden. Durch die große Datenmenge des Gesamtdatensatzes, vor allem aus der Kernzone des Untersuchungsgebietes, war es möglich eine fundierte Charakterisierung der Microcebus griseoruus-M. murinus- Hybridzone durchzuführen. Die Übereinstimmung der Hybridzone mit dem beobachteten Vegetationsmosaik zusammen mit den Ergebnissen der PCA, der PCoA und der Bayes’schen Clusteranalyse sprechen für das Modell der „Mosaik Hybridzone“, während die Einzelbetrachtung der mosaikartig verteilten intermediären Übergangswälder eine hohe Abundanz der Hybride aufzeigte und somit eher das „Bounded Hybrid Superiority model“ unterstützt. Der gewählte geographische Beprobungsmaßstab könnte somit einen Einfluss auf die beobachtete Struktur einer Hybridzone haben. Eines der markantesten Muster in der Hybridzone ist das stark kontrastierende cyto-nukleäre Muster. Der seit ca. 3000 Jahren fortschreitende Klimawandel in Südmadagaskar und die damit verbundene Expansion des Verbreitungsgebietes der Art Microcebus griseorufus nach Osten, das in dieser Arbeit festgestellte „male-biased dispersal“ bei M. griseorufus und der Einfluss exogener Selektion sprechen stark für eine massive asymmetrische nukleäre Genintrogression von M. griseorufus-Allelen in M. murinus-Populationen, verbunden mit einer potentiellen Verdrängung der Art M. murinus aus der Übergangswaldzone. In den jeweiligen Kerngebieten Dornbusch und Küstenwald bleibt jedoch die Diskretheit beider Arten gewahrt.
Resumo:
Native to sub-Saharan Africa, Aethina tumida Murray (Coleoptera: Nitidulidae) is now an invasive pest of honey bee, Apis mellifera L., colonies in Australia and North America. Knowledge about the introduction (s) of this beetle from Africa into and among the current ranges will elucidate pest populations and invasion pathways and contribute to knowledge of how a parasite expands in new populations. We examined genetic variation in adult beetle samples from the United States, Australia, Canada, and Africa by sequencing a 912-base pair region of the mitochondrial DNA cytochrome c oxidase subunit I gene and screening 10 informative microsatellite loci. One Canadian introduction of small hive beetles can be traced to Australia, whereas the second introduction seems to have come from the United States. Beetles now resident in Australia were of a different African origin than were beetles in North America. North American beetles did not show covariance between two mitochondrial haplotypes and their microsatellite frequencies, suggesting that these beetles have a shared source despite having initial genetic structure within their introduced range. Excellent dispersal of beetles, aided in some cases by migratory beekeeping and the bee trade, seems to lead to panmixis in the introduced populations as well as in Africa.
Resumo:
Aim The strawberry poison frog, Oophaga pumilio, has undergone a remarkable radiation of colour morphs in the Bocas del Toro archipelago in Panama. This species shows extreme variation in colour and pattern between populations that have been geographically isolated for < 10,000 years. While previous research has suggested the involvement of divergent selection, to date no quantitative test has examined this hypothesis. Location Bocas del Toro archipelago, Panama. Methods We use a combination of population genetics, phylogeography and phenotypic analyses to test for divergent selection in coloration in O. pumilio. Tissue samples of 88 individuals from 15 distinct populations were collected. Using these data, we developed a gene tree using the mitochondrial DNA (mtDNA) d-loop region. Using parameters derived from our mtDNA phylogeny, we predicted the coalescence of a hypothetical nuclear gene underlying coloration. We collected spectral reflectance and body size measurements on 94 individuals from four of the populations and performed a quantitative analysis of phenotypic divergence. Results The mtDNA d-loop tree revealed considerable polyphyly across populations. Coalescent reconstructions of gene trees within population trees revealed incomplete genotypic sorting among populations. The quantitative analysis of phenotypic divergence revealed complete lineage sorting by colour, but not by body size: populations showed non-overlapping variation in spectral reflectance measures of body coloration, while variation in body size did not separate populations. Simulations of the coalescent using parameter values derived from our empirical analyses demonstrated that the level of sorting among populations seen in colour cannot reasonably be attributed to drift. Main conclusions These results imply that divergence in colour, but not body size, is occurring at a faster rate than expected under neutral processes. Our study provides the first quantitative support for the claim that strong diversifying selection underlies colour variation in the strawberry poison frog.
Resumo:
Background DNA polymerase γ (POLG) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the POLG gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of the enzyme and produce a broad clinical spectrum. The most frequent mutation p.A467T is localised in the linker region between these domains. In compound heterozygote patients the p.A467T mutation has been described to be associated amongst others with fatal childhood encephalopathy. These patients have a poorer survival rate compared to homozygotes. Methods mtDNA content in various tissues (fibroblasts, muscle and liver) was quantified using quantitative PCR (qPCR). OXPHOS activities in the same tissues were assessed using spectrophotometric methods and catalytic stain of BN-PAGE. Results We characterise a novel splice site mutation in POLG found in trans with the p.A467T mutation in a 3.5 years old boy with valproic acid induced acute liver failure (Alpers-Huttenlocher syndrome). These mutations result in a tissue specific depletion of the mtDNA which correlates with the OXPHOS-activities. Conclusions mtDNA depletion can be expressed in a high tissue-specific manner and confirms the need to analyse primary tissue. Furthermore, POLG analysis optimises clinical management in the early stages of disease and reinforces the need for its evaluation before starting valproic acid treatment.
Resumo:
Dispersal and recruitment are central processes that shape the geographic and temporal distributions of populations of marine organisms. However, significant variability in factors such as reproductive output, larval transport, survival, and settlement success can alter the genetic identity of recruits from year to year. We designed a temporal and spatial sampling protocol to test for genetic heterogeneity among adults and recruits from multiple time points along a similar to 400 km stretch of the Oregon (USA) coastline. In total, 2824 adult and recruiting Balanus glandula were sampled between 2001 and 2008 from 9 sites spanning the Oregon coast. Consistent with previous studies, we observed high mitochondrial DNA diversity at the cytochrome oxidase I locus (884 unique haplotypes) and little to no spatial genetic population structure among the 9 sites (Phi(ST) = 0.00026, p = 0.170). However, subtle but significant temporal shifts in genetic composition were observed among year classes (Phi(ST) = 0.00071, p = 0.035), and spatial Phi(ST) varied from year to year. These temporal shifts in genetic structure were correlated with yearly differences in the strength of coastal upwelling (p = 0.002), with greater population structure observed in years with weaker upwelling. Higher levels of barnacle settlement were also observed in years with weaker upwelling (p < 0.001). These data suggest the hypothesis that low upwelling intensity maintains more local larvae close to shore, thereby shaping the genetic structure and settlement rate of recruitment year classes.