978 resultados para Miocene (Messinian)–Pliocene
Resumo:
Continuous late Neogene planktonic foraminiferal records have been studied in the deep-sea cores of DSDP Sites 173, 310, and 296 across mid-latitudes of the North Pacific. These three sites have been correlated on the basis of planktonic foraminiferal events and major paleoclimatic/paleoceanographic intervals and tied to diatom, radiolarian, and nannofossil datum levels, and paleomagnetic and isotopic stratigraphy. Ten planktonic foraminiferal datum levels have been recognized within these Pliocene to Pleistocene sections; two of these are recognizable within the Pleistocene and eight within the Pliocene. Six planktonic foraminiferal zones are proposed which combined with the foraminiferal datum levels provide a high resolution biostratigraphic correlation for the mid-latitudes of the North Pacific.
Resumo:
From October to December in 1996, Sites 1039 through 1043 were drilled on the lower continental slope and the bottom of the Middle American Trench. Planktonic foraminifers were obtained from 377 samples of the total 487 examined. The Pliocene- to Pleistocene-age sediments of Sites 1039 and 1043 are continuous from Zones N19 through N23. At Sites 1039 and 1040, middle Miocene sediments are also continuous, encompassing Zones N8 through N12. The sequences of the upper part of Sites 1040, 1041, 1042, and 1043 are décollements, tentatively assignable to Zone N19 for Sites 1040, 1041, and 1042 and to Zone N22 for Site 1043. The oldest sediments of these sites are assigned to Zone N7 (latest early Miocene), ~17 Ma in age.
Resumo:
Site 1085 is located on the continental rise of southwest Africa at a water depth of 1713 m off the mouth of the Orange River in the Cape Basin. The site is part of the suite of locations drilled during Leg 175 on the Africa margin to reconstruct the onset and evolution of the elevated biological productivity associated with the Benguela Current upwelling system (Wefer, Berger, Richter, et al., 1998, doi:10.2973/odp.proc.ir.175.1998). Three sediment samples were collected per section from Cores 170-1085A-28H through 45X (251-419 mbsf) to provide a survey of the sediment record of paleoproductivity from the middle late Miocene to the early Pliocene (~8.7-4.7 Ma), which is a period that includes the postulated northward migration and intensification of the Benguela Current and the establishment of modern circulation off southwest Africa (Siesser, 1980; Diester-Haass et al., 1992; Berger et al., 1998). Core 170-1085A-30H (270-279 mbsf) had essentially no recovery; this coring gap was filled with samples from Cores 170-1085B-29H and 30H (261-280 mbsf). The results of measurements of multiple paleoproductivity proxies are summarized in this report. Included in these proxies are the radiolarian, foraminiferal, and echinoderm components of the sand-sized sediment fraction. Opal skeletons of radiolarians (no diatoms were found) relate to paleoproductivity and water mass chemistry (Summerhayes et al., 1995, doi:10.1016/0079-6611(95)00008-5; Lange and Berger, 1993, doi:10.2973/odp.proc.sr.130.011.1993; Nelson et al., 1995, doi:10.1029/95GB01070). The accumulation rates of benthic foraminifers are useful proxies for paleoproductivity (Herguera and Berger, 1991, doi:10.1130/0091-7613(1991)019<1173:PFBFAG>2.3.CO;2; Nees, 1997, doi:10.1016/S0031-0182(97)00012-6; Schmiedl and Mackensen, 1997, doi:10.1016/S0031-0182(96)00137-X) because these fauna subsist on organic matter exported from the photic zone. Echinoderms also depend mainly on food supply from the photic zone (Gooday and Turley, 1990), and their accumulation rates are an additional paleoproductivity proxy. Concentrations of calcium carbonate (CaCO3) and organic carbon in sediment samples are fundamental measures of paleoproductivity (e.g., Meyers, 1997, doi:10.1016/S0146-6380(97)00049-1). In addition, organic matter atomic carbon/nitrogen (C/N) ratios and delta13C values can be used to infer the origin of the organic matter contained within the sediments and to explore some of the factors affecting its preservation and accumulation (Meyers, 1994, doi:10.1016/0009-2541(94)90059-0).
Resumo:
Oxygen and carbon isotope records are presented for the planktonic foraminifers Dentoglobigerina altispira and Globigerinoides sacculifer (shallow-dwelling species) and Globoquadrina venezuelana (deep-dwelling species) from Miocene sediments at two Ocean Drilling Program sites, located at depths of near 3000 m, in the western (Site 709) and eastern (Site 758) tropical Indian Ocean. The planktonic isotope record at Site 709 is compared with the benthic isotope record obtained at this site by Woodruff et al. (1990, doi:10.2973/odp.proc.sr.115.147.1990). The isotope stratigraphy is related to the biostratigraphy and the available magnetostratigraphy at the sites. Despite varying sampling density, incompleteness of isotopic records, and the condensed (or even disturbed) nature of parts of the sequences, a number of chronostratigraphic isotopic signals previously recognized in the equatorial Pacific and at other tropical Indian Ocean sites are identified.
Resumo:
We present high-resolution (2-3 kyr) benthic foraminiferal stable isotopes in a continuous, well-preserved sedimentary archive from the West Pacific Ocean (Ocean Drilling Program Site 1146), which track climate evolution in unprecedented resolution over the period 12.9 to 8.4 Ma. We developed an astronomically tuned chronology over this interval and integrated our new records with published isotope data from the same location to reconstruct long-term climate and ocean circulation development between 16.4 and 8.4 Ma. This extended perspective reveals that the long eccentricity (400 kyr) cycle is prominently encoded in the d13C signal over most of the record, reflecting long-term fluctuations in the carbon cycle. The d18O signal closely follows variations in short eccentricity (100 kyr) and obliquity (41 kyr). In particular, the obliquity cycle is prominent from ~14.6 to 14.1 Ma and from ~9.8 to 9.2 Ma, when high-amplitude variability in obliquity is congruent with low-amplitude variability in short eccentricity. The d18O curve is additionally characterized by a series of incremental steps at ~14.6, 13.9, 13.1, 10.6, 9.9, and 9.0 Ma, which we attribute to progressive deep water cooling and/or glaciation episodes following the end of the Miocene climatic optimum. On the basis of d18O amplitudes, we find that climate variability decreased substantially after ~13 Ma, except for a remarkable warming episode at ~10.8-10.7 Ma at peak insolation during eccentricity maxima (100 and 400 kyr). This transient warming, associated with a massive negative carbon isotope shift, is reminiscent of intense global warming events at eccentricity maxima during the Miocene climatic optimum.
Resumo:
Drilling at Ocean Drilling Program Site 802 in the central Mariana Basin, northwest Pacific Ocean, revealed an unexpected 222-m-thick sequence of well-cemented tuff of Miocene age. The deposits are unusual in that their source is presumably an unmapped seamount and they exhibit several peculiar petrological and mineralogical features. The well-developed secondary mineral sequence which includes analcime is rare in such relatively young, unburied deposits, in an area where there is little other evidence of hydrothermal activity. The massive tuff section also contains abundant fissure veins made of a rare silicate carbonate sulfate hydroxide hydrate of calcium, called thaumasite, which has not before been described in deep submarine deposits. The smectite-zeolite-thaumasite paragenesis coincides with the presence of chloride and calcium-enriched interstitial waters. The diagenetic evolution of the deposit appears to have been largely controlled by the depositional mode. The discharges of disaggregated and rejuvenated volcaniclasts seem to have been abrupt and repeated. The Miocene tuff at Site 802 thus provides new insights on the interactions between basaltic glass, biogenic phases, and seawater, in a specific deep-sea environment.
Resumo:
Chert, Porcellanite, and other silicified rocks formed in response to high heat flow in the lower 50 meters of 275 meters of sediments at Deep Sea Drilling Project Site 504, Costa Rica Rift. Chert and Porcellanite partly or completely replaced upper Miocene chalk and limestone. Silicified rock occurs as nodules, laminae, stringers, and casts of burrows, and consists of quartz and opal-CT in varying amounts, associated with secondary calcite. The secondary silica was derived from dissolution of opal-A (biogenic silica), mostly diatom frustules and radiolarian tests. Temperature data obtained at the site indicate that transformation of opal-A to opal-CT began at about 50°C, and transformation from opal-CT to quartz at about 55°C. Quartz is most abundant close to basement basalts. These silica transformations occurred over the past 1 m.y., and took place so rapidly that there was incomplete ordering of opal-CT before transformation to quartz; opal-CT formed initially with an uncommonly wide d spacing. Quartz shows poor crystallinity. Chemical data show that the extensively silicified rocks consist of over 96% SiO2; in these rocks, minor and trace elements decreased greatly, except for boron, which increased. Low Al2O3 and TiO2 contents in all studied rocks preclude the presence of significant volcanic or terrigenous detritus. Mn content increases with depth, perhaps reflecting contributions from basalts or hydrothermal solutions. Comparisons with cherts from oceanic plateaus in the central Pacific point to a more purely biogenic host sediment for the Costa Rica Rift cherts, more rapid precipitation of quartz, and formation nearer a spreading center. Despite being closer to continental sources of ash and terrigenous detritus, Costa Rica Rift cherts have lower Al2O3, Fe2O3, and Mn concentrations.
Resumo:
Leg 94 Sites are located in a large geographic area of the northeastern Atlantic. Clay mineral analyses of the sediments recovered on Leg 94 (Eocene to the present), together with results obtained from previous DSDP legs (47B, 48, 80, 81, 82), provide greater insight into the paleoenvironmental evolution of the northeastern Atlantic. The characteristics of Eocene clay sediments are regional, reflecting, in the absence of strong bottom currents, the influence of neighboring petrographic environments: basic volcanic rocks (Sites 403-406, 552, and 608) and acid volcanic rocks (Sites 508 to 510). During the Oligocene, atmospheric circulation patterns left their mineralogical signatures in the southern part of the area investigated (Sites 558 and 608), whereas during the Miocene the intrusion of northern water masses led to the gradual homogenization of the clay sedimentation throughout the North Atlantic. In the late Pliocene, input from glacial sources became widespread.
Resumo:
This report includes the petrographic description and reviews the distribution of lithic clasts in sediments drilled during Leg 180 in the Woodlark Basin (southwest Pacific). The lithic clasts include (1) metamorphic rocks; (2) granites; (3) serpentinites, gabbros, dolerites, and basalts likely derived from the Papuan ophiolite belt; (4) rare alkaline volcanites reworked in middle Miocene sediments; (5) medium- to high-K calc-alkaline island arc volcanites, in part as reworked clasts, and explosive products deposited by fallout or reworked by turbiditic currents; and (6) rare sedimentary fragments. At the footwall sites the clast assemblage evidences the association of dolerites and evolved gabbroic rocks; the serpentinite likely pertaining to the same ophiolitic complex are likely derived from onland outcrops and transported by means of turbidity currents. On the whole, extensional tectonics active at least since the middle Pliocene can be inferred. The calc-alkaline volcanism is in continuity with the arc-related products from the Papua Peninsula and D'Entrecasteaux Islands and with the latest volcanics of the Miocene Trobrian arc. However, the medium- to high-K and shoshonitic products do not display a significant temporal evolution within the stratigraphic setting. Lava clasts, volcanogenic grains, and glass shards are associated with turbidity currents, whereas in the Pliocene of northern margin the increasing frequency of tephra (glass shards and vesicular silicic fragments) suggests more explosive activity and increasing contribution to the sediments from aerial fallout materials. Evidence of localized alkalic volcanism of presumable early to middle Miocene age is a new finding. It could represent a rift phase earlier than or coeval to the first opening of the Woodlark Basin or, less probably, could derive from depositional trajectories diverted from an adjacent basin.
Resumo:
Lower Oligocene to Pleistocene volcaniclastic sands and sandstones recovered around the Izu-Bonin Arc during Ocean Drilling Program Leg 126 were derived entirely from Izu-Bonin Arc volcanism. Individual grains consist of volcanic glass, pumice, scoria, basaltic or andesitic fragments, plagioclase, pyroxene, and minor olivine and hornblende. In Pliocene-Pleistocene samples plagioclase and heavy minerals in the volcaniclastic sands and sandstones are present in the following abundances: plagioclase > orthopyroxene > clinopyroxene > pigeonite > olivine. In contrast, plagioclase and heavy minerals found in Oligocene-Miocene samples occur in the following order: plagioclase > clinopyroxene > orthopyroxene > hornblende. The low concentration of Al, Ti, and Cr in calcium-rich clinopyroxenes in Oligocene to Holocene sediments suggests that the sources of the volcaniclastic detritus were nonalkalic igneous rocks. There are, however, some distinctive differences in the chemical composition of pyroxene between the Pliocene-Pleistocene and Oligocene-Miocene volcaniclastic sands and sandstones. Orthopyroxene belongs to the hypersthene-ferrohypersthene series (Fe-rich) in Pliocene-Pleistocene sediments, and the bronzitehypersthene series (Mg-rich) in Oligocene-Miocene sediments. Clinopyroxene is characterized by augite and pigeonite in Pliocene-Pleistocene sediments, and by the diopside-augite series in Oligocene-Miocene sediments. Mineral assemblages and mineral chemistry of the volcaniclastic sands and sandstones reflect those of the volcanic source rocks. Therefore, the observed changes in mineralogy record the historical change in volcanism of the Izu-Bonin Arc. The mineralogy is consistent with the geochemistry of the volcaniclastic sands and sandstones and the geochemistry of forearc volcanic rocks of the Izu-Bonin Arc since the Oligocene.