806 resultados para Migration Task Force
Resumo:
A new algorithm is proposed for scheduling preemptible arbitrary-deadline sporadic task systems upon multiprocessor platforms, with interprocessor migration permitted. This algorithm is based on a task-splitting approach - while most tasks are entirely assigned to specific processors, a few tasks (fewer than the number of processors) may be split across two processors. This algorithm can be used for two distinct purposes: for actually scheduling specific sporadic task systems, and for feasibility analysis. Simulation- based evaluation indicates that this algorithm offers a significant improvement on the ability to schedule arbitrary- deadline sporadic task systems as compared to the contemporary state-of-art. With regard to feasibility analysis, the new algorithm is proved to offer superior performance guarantees in comparison to prior feasibility tests.
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising two different types of processors—such a platform is referred to as two-type platform. We present two low degree polynomial time-complexity algorithms, SA and SA-P, each providing the following guarantee. For a given two-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i) using SA, it is guaranteed to find such an assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which processors are 1+α times faster. The parameter 0<α≤1 is a property of the task set; it is the maximum of all the task utilizations that are no greater than 1. We evaluate average-case performance of both the algorithms by generating task sets randomly and measuring how much faster processors the algorithms need (which is upper bounded by 1+α/2 for SA and 1+α for SA-P) in order to output a feasible task assignment (intra-migrative for SA and non-migrative for SA-P). In our evaluations, for the vast majority of task sets, these algorithms require significantly smaller processor speedup than indicated by their theoretical bounds. Finally, we consider a special case where no task utilization in the given task set can exceed one and for this case, we (re-)prove the performance guarantees of SA and SA-P. We show, for both of the algorithms, that changing the adversary from intra-migrative to a more powerful one, namely fully-migrative, in which tasks can migrate between processors of any type, does not deteriorate the performance guarantees. For this special case, we compare the average-case performance of SA-P and a state-of-the-art algorithm by generating task sets randomly. In our evaluations, SA-P outperforms the state-of-the-art by requiring much smaller processor speedup and by running orders of magnitude faster.
Resumo:
The multiprocessor scheduling scheme NPS-F for sporadic tasks has a high utilisation bound and an overall number of preemptions bounded at design time. NPS-F binpacks tasks offline to as many servers as needed. At runtime, the scheduler ensures that each server is mapped to at most one of the m processors, at any instant. When scheduled, servers use EDF to select which of their tasks to run. Yet, unlike the overall number of preemptions, the migrations per se are not tightly bounded. Moreover, we cannot know a priori which task a server will be currently executing at the instant when it migrates. This uncertainty complicates the estimation of cache-related preemption and migration costs (CPMD), potentially resulting in their overestimation. Therefore, to simplify the CPMD estimation, we propose an amended bin-packing scheme for NPS-F allowing us (i) to identify at design time, which task migrates at which instant and (ii) bound a priori the number of migrating tasks, while preserving the utilisation bound of NPS-F.
Resumo:
Postural control deficits are the most disabling aspects of Parkinson's disease (PD), resulting in decreased mobility and functional independence. The aim of this study was to assess the postural control stability, revealed by variables based on the centre of pressure (CoP), in individuals with PD while performing a sit-to-stand-to-sit sequence under single- and dual-task conditions. An observational, analytical and cross-sectional study was performed. The sample consisted of 9 individuals with PD and 9 healthy controls. A force platform was used to measure the CoP displacement and velocity during the sit-to-stand-to-sit sequence. The results were statistically analysed. Individuals with PD required greater durations for the sit-to-stand-to-sit sequence than the controls (p < 0.05). The anteroposterior and mediolateral CoP displacement were higher in the individuals with PD (p < 0.05). However, only the anteroposterior CoP velocity in the stand-to-sit phase (p = 0.006) was lower in the same individuals. Comparing the single- and dual-task conditions in both groups, the duration, the anteroposterior CoP displacement and velocity were higher in the dual-task condition (p < 0.05). The individuals with PD presented reduced postural control stability during the sit-to-stand-to-sit sequence, especially when under the dual-task condition. These individuals have deficits not only in motor performance, but also in cognitive performance when performing the sit-to-stand-to-sit sequence in their daily life tasks. Moreover, both deficits tend to be intensified when two tasks are performed simultaneously.
Resumo:
Depuis plus de cent ans, les Mossi du Burkina Faso évoluent avec les migrations de travail. Entre les travaux forcés de l’ère coloniale et les flux migratoires actuels, la migration est devenue une institution centrale chez les Mossi. Elle s’est imposée comme une solution aux bouleversements engendrés par de l’économie de marché, la dégradation de leur environnement et les tensions internes. Il s’est développé un système normatif qui soutient et qui perpétue ces comportements migratoires. Cette intégration institutionnelle a cependant engendré un affaiblissement de la gérontocratie et du patriarcat ce qui a déséquilibré l’organisation sociale « traditionnelle ». À partir de la méthode de l’anthropologie du changement social, ce mémoire propose une étude locale et diachronique des transformations générées par le processus migratoire. Il explique comment la migration s’est institutionnalisée, quelles sont les conséquences sur les rapports de pouvoir et quels sont les innovations, les résistances et les métissages qui en découlent. Ainsi, les migrations de travail devaient être une réponse à la crise socioéconomique vécue par les Mossi, mais par son institutionnalisation, elles sont également apparues être l’une des principales causes de cette crise.
Resumo:
Ce mémoire présente, dans une première partie, une analyse détaillée des flux migratoires entre les différentes régions administratives du Québec entre 1991 et 2006. Nous avons utilisé quelques indicateurs permettant de quantifier l’importance de ces mouvements à la fois sur la région d’origine et sur la population d’accueil. Afin de réaliser ce travail, nous avons eu recours aux matrices de flux migratoires entre les 17 régions administratives québécoises, matrices qui sont publiées par l’Institut de la Statistique du Québec à l’aide du fichier de la Régie de l’assurance-maladie du Québec (RAMQ). Les méthodes d’analyse utilisées nous ont permis de mesurer l’intensité de ces flux, leur concentration spatiale, l’orientation spatiale des émigrants, les hiérarchies des régions administratives ainsi que l’efficience des migrations interrégionales du Québec. Nous avons analysé comment les régions administratives du Québec sont affectées par la migration interrégionale. Dans une deuxième partie, nous avons porté notre attention sur la migration interrégionale en fonction de certains groupes d’âge. L’étude des migrations en fonction du groupe d’âge a permis de mieux saisir les conséquences démographiques de ces mouvements pour les régions d’origine et de destination, particulièrement en ce qui concerne la structure de la population résultant de ces flux. Finalement, dans une troisième partie, nous avons analysé les mouvements migratoires entre l’île de Montréal et les Municipalités Régionales de Comté des quatre régions qui l’entourent afin de comprendre la part de l’étalement urbain dans l’émigration des Montréalais. Les résultats obtenus nous permettent de conclure en dégageant certaines tendances. D’abord, nous avons établi que les migrations dans la province de Québec se font des régions éloignées vers les régions du centre. Ces régions gagnantes renferment ou avoisinent les grands centres urbains de la province : Québec, Montréal et Ottawa. Nous assistons donc à une redéfinition du paysage québécois : le nord se déserte, le centre a une faible croissance et la grande région de Montréal, plus particulièrement les régions en banlieue de l’île de Montréal, est en nette croissance. Ensuite, l’analyse par groupe d’âge a illustré que les régions excentrées ont très rarement des soldes positifs et que les jeunes sont très nombreux à quitter ces régions. Pour l’île de Montréal, ce sont les jeunes qui arrivent en grand nombre. Cependant, après la trentaine, les gens désertent l’île pour d’autres régions de la province. Ces départs profitent aux régions adjacentes, qui font d’énormes gains chez les jeunes travailleurs. Finalement, l’analyse des échanges migratoires entre l’île de Montréal et les MRC des quatre régions adjacentes nous a permis de constater que ces MRC sont très souvent gagnantes dans leurs échanges migratoires. Particulièrement lors de la période 2001-2006, où seulement deux territoires sont perdants dans leurs échanges migratoires avec les autres régions du système, soit l’île de Montréal et la MRC de Longueuil.
Resumo:
Single point interaction haptic devices do not provide the natural grasp and manipulations found in the real world, as afforded by multi-fingered haptics. The present study investigates a two-fingered grasp manipulation involving rotation with and without force feedback. There were three visual cue conditions: monocular, binocular and projective lighting. Performance metrics of time and positional accuracy were assessed. The results indicate that adding haptics to an object manipulation task increases the positional accuracy but slightly increases the overall time taken.
Resumo:
This paper presents a study investigating how the performance of motion-impaired computer users in point and click tasks varies with target distance (A), target width (W), and force-feedback gravity well width (GWW). Six motion-impaired users performed point and click tasks across a range of values for A, W, and GWW. Times were observed to increase with A, and to decrease with W. Times also improved with GWW, and, with the addition of a gravity well, a greater improvement was observed for smaller targets than for bigger ones. It was found that Fitts Law gave a good description of behaviour for each value of GWW, and that gravity wells reduced the effect of task difficulty on performance. A model based on Fitts Law is proposed, which incorporates the effect of GWW on movement time. The model accounts for 88.8% of the variance in the observed data.
Resumo:
The incorporation of new representations into the mental lexicon has raised numerous questions about the organisational principles that govern the process. A number of studies have argued that similarity between the new L3 items and existing representations in the L1 and L2 is the main incorporating force (Hall & Ecke, 2003; Herwig, 2001). Experimental evidence obtained through a primed picture-naming task with L1 Polish-L2 English learners of L3 Russian supports Hall and Ecke’s Parasitic Model of L3 vocabulary acquisition, displaying a significant main effect for both priming and proficiency. These results complement current models of vocabulary acquisition and lexical access in multilingual speakers.
Resumo:
We assess the corticomuscular coherence (CMC) of the contralateral primary motor cortex and the hand muscles during a finger force-tracking task and explore whether the pattern of finger coordination has an impact on the CMC level. Six healthy subjects (three men and three women) were recruited to conduct the force-tracking tasks comprising two finger patterns, i.e., natural combination of index and middle fingers and unnatural combination of index and middle fingers (i.e., simultaneously producing equal force strength in index and middle finger). During the conducting of the tasks with right index and middle finger, MEG and sEMG signals were recorded from left primary motor cortex (M1) and right flexor digitorum superficialis (FDS), respectively; the contralateral CMC was calculated to assess the neuromuscular interaction. Finger force-tracking tasks of Common-IM only induce beta-band CMC, whereas Uncommon-IM tasks produce CMC in both beta and low-gamma band. Compared to the force-tracking tasks of Common-IM, the Uncommon-IM task is associated with the most intensive contralateral CMC. Our study demonstrated that the pattern of finger coordination had significant impact on the CMC between the contralateral M1 and hand muscles, and more corticomuscular interaction was necessary for unnaturally coordinated finger activities to regulate the fixed neural drive of hand muscles.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Poor posture control has been associated with an increased risk of falls and mobility disability among older adults. This study was conducted to assess the test-retest reliability and sensitivity to group differences regarding the time-limit (TLimit) of one-leg standing and selected balance parameters obtained with a force platform in older and young adults. A secondary purpose was to assess the relationship between TLimit and these balance parameters. Twenty-eight healthy older adults (age: 69±5years) and thirty young adults (age: 21±4years) participated in this study. Two one-leg stance tasks were performed: (1) three trials of 30s maximum and (2) one TLimit trial. The following balance parameters were computed: center of pressure area, RMS sway amplitude, and mean velocity and mean frequency in both the anterio-posterior and medio-lateral directions. All balance parameters obtained with the force platform as well as the TLimit variable were sensitive to differences in balance performance between older and young adults. The test-retest reliability of these measures was found to be acceptable (ICC: 0.40-0.85), with better ICC scores observed for mean velocity and mean frequency in the older group. Pearson correlations coefficients (r) between balance parameters and TLimit ranged from -0.16 to -0.54. These results add to the current literature that can be used in the development of measurement tools for evaluating balance in older and young adults. © 2013 Elsevier Ltd.
Resumo:
Optimal levels of noise stimulation have been shown to enhance the detection and transmission of neural signals thereby improving the performance of sensory and motor systems. The first series of experiments in the present study aimed to investigate whether subsensory electrical noise stimulation applied over the triceps surae (TS) in seated subjects decreases torque variability during a force-matching task of isometric plantar flexion and whether the same electrical noise stimulation decreases postural sway during quiet stance. Correlation tests were applied to investigate whether the noise-induced postural sway decrease is linearly predicted by the noise-induced torque variability decrease. A second series of experiments was conducted to investigate whether there are differences in torque variability between conditions in which the subsensory electrical noise is applied only to the TS, only to the tibialis anterior (TA) and to both TS and TA, during the force-matching task with seated subjects. Noise stimulation applied over the TS muscles caused a significant reduction in force variability during the maintained isometric force paradigm and also decreased postural oscillations during quiet stance. Moreover, there was a significant correlation between the reduction in force fluctuation and the decrease in postural sway with the electrical noise stimulation. This last result indicates that changes in plantar flexion force variability in response to a given subsensory random stimulation of the TS may provide an estimate of the variations in postural sway caused by the same subsensory stimulation of the TS. We suggest that the decreases in force variability and postural sway found here are due to stochastic resonance that causes an improved transmission of proprioceptive information. In the second series of experiments, the reduction in force variability found when noise was applied to the TA muscle alone did not reach statistical significance, suggesting that TS proprioception gives a better feedback to reduce force fluctuation in isometric plantar flexion conditions.
Resumo:
This work reports evidence of the induced migration of Mn2+ ions in Cd(1-x)MnxS nanocrystals (NCs) by selecting a specific thermal treatment for each sample. The growth and characterization of these magnetic dots were investigated by atomic force microscopy (AFM), optical absorption (OA), and electronic paramagnetic resonance (EPR) techniques. The comparison of experimental and simulated EPR spectra confirms the incorporation of Mn2+ ions both in the core and at the dot surface regions. The thermal treatment of a magnetic sample, via selected annealing temperature and/or time, affects the fine and hyperfine interaction constants which modify the shape and the intensity of the EPR transition spectrum. The identification of these changes has allowed tracing the magnetic ion migration from core to surface regions of a dot as well as inferring the local density of the magnetic impurity ions. (C) 2011 Elsevier Ltd. All rights reserved.