951 resultados para Microwave hydrothermal synthesis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wurtzite-structured ZnS nanostructures have been synthesized by means of a microwave-solvothermal method at 140°C using three precursors (chloride, nitrate and acetate). Different techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) measurements have been employed to characterize this material. The structure, surface morphology, chemical composition and optical properties were investigated as function of precursor. In order to complement experimental results, first principles calculations at DFT level were carried out in order to obtain the relative stability of the proposed intermediates along the formation mechanism. - See more at: http://www.eurekaselect.com/117237/article#sthash.GzvnCBTB.dpuf

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new methodology for the synthesis of tunable patch filters is presented. The methodology helps the designer to perform a theoretical analysis of the filter through a coupling matrix that includes the effect of the tuning elements used to tune the filter. This general methodology accounts for any tuning parameter desired and was applied to the design of a tunable dual-mode patch filter with independent control of center frequency and bandwidth (BW). The bandpass filter uses a single triangular resonator with two etched slots that split the fundamental degenerate modes and form the filter passband. Varactor diodes assembled across the slots are used to vary the frequency of each degenerate fundamental mode independently, which is feasible due to the nature of the coupling scheme of the filter. The varactor diode model used in simulations, their assembling, the dc bias configuration, and measured results are presented. The theory results are compared to the simulations and to measurements showing a very good agreement and validating the proposed methodology. The fabricated filter presents an elliptic response with 20% of center frequency tuning range around 3.2 GHz and a fractional BW variation from 4% to 12% with low insertion loss and high power handling with a 1-dB compression point higher than +14.5 dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barium praseodymium tungstate (Ba1-xPr2x/3)WO4 crystals with (x = 0, 0.01, and 0.02) were prepared by the coprecipitation method. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopies. The shape and size of these crystals were observed by field emission scanning electron microcopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. Moreover, we have studied the photocatalytic (PC) activity of crystals for degradation of rhodamine B (RhB) dye. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all crystals exhibit a tetragonal structure without deleterious phases. FT-Raman spectra exhibited 13 Raman-active modes in a range from 50 to 1000 cm(-1), while FT-IR spectra have 8 infrared active modes in a range from 200 to 1050 cm(-1). FE-SEM images showed different shapes (bonbon-, spindle-, rice-and flake-like) as well as a reduction in the crystal size with an increase in Pr3+ ions. A possible growth process was proposed for these crystals. UV-vis absorption measurements revealed a decrease in optical band gap values with an increase of Pr3+ into the matrix. An intense green PL emission was noted for (Ba1-xPr2x/3)WO4 crystals (x = 0), while crystals with (x = 0.01 and 0.02) produced a reduction in the wide band PL emission and the narrow band PL emission which is related to f-f transitions from Pr3+ ions. High photocatalytic efficiency was verified for the bonbon-like BaWO4 crystals as a catalyst in the degradation of the RhB dye after 25 min under UV-light. Finally, we discuss possible mechanisms for PL and PC properties of these crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this communication, we investigate the effect of different surfactants: cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP-K40) on the growth process of zinc molybdate (beta-ZnMoO4) microcrystals synthesized under hydrothermal conditions at 140 degrees C for 8 h. These microcrystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL) measurements. XRD patterns proved that these crystals are monophasic and present a wolframite-type monoclinic structure. FE-SEM images revealed that the surfactants modified the crystal shapes, suggesting the occurrence of distinct crystal growth processes. The CTAB cationic surfactant promotes the hindrance of small nuclei that leads to the formation of rectangle-like crystals, SDS anionic surfactant induces a growth of irregular hexagons with several porous due to considerable size effect of counter-ions on the crystal facets, PVP-K40 non-ionic surfactant allows a reduction in size and thickness of plate-like crystals, while without surfactants have the formation of irregular plate-like crystals. Finally, the PL properties of beta-ZnMoO4 microcrystals were explained by means of different shape/size, surface defects and order-disorder into lattice. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biohybrid derivatives of π-conjugated materials are emerging as powerful tools to study biological events through the (opto)electronic variations of the π-conjugated moieties, as well as to direct and govern the self-assembly properties of the organic materials through the organization principles of the bio component. So far, very few examples of thiophene-based biohybrids have been reported. The aim of this Ph. D thesis has been the development of oligothiophene-oligonucleotide hybrid derivatives as tools, on one side, to detect DNA hybridisation events and, on the other, as model compounds to investigate thiophene-nucleobase interactions in the solid state. To obtain oligothiophene bioconjugates with the required high level of purity, we first developed new synthetic ecofriendly protocols for the synthesis of thiophene oligomers. Our innovative heterogeneous Suzuki coupling methodology, carried out in EtOH/water or isopropanol under microwave irradiation, allowed us to obtain alkyl substituted oligothiophenes and thiophene based co-oligomers in high yields and very short reaction times, free from residual metals and with improved film forming properties. These methodologies were subsequently applied in the synthesis of oligothiophene-oligonucleotide conjugates. Oligothiophene-5-labeled deoxyuridines were synthesized and incorporated into 19-meric oligonucletide sequences. We showed that the oligothiophene-labeled oligonucletide sequences obtained can be used as probes to detect a single nucleotide polymorphism (SNP) in complementary DNA target sequences. In fact, all the probes showed marked variations in emission intensity upon hybridization with a complementary target sequence. The observed variations in emitted light were comparable or even superior to those reported in similar studies, showing that the biohybrids can potentially be useful to develop biosensors for the detection of DNA mismatches. Finally, water-soluble, photoluminescent and electroactive dinucleotide-hybrid derivatives of quaterthiophene and quinquethiophene were synthesized. By means of a combination of spectroscopy and microscopy techniques, electrical characterizations, microfluidic measurements and theoretical calculations, we were able to demonstrate that the self-assembly modalities of the biohybrids in thin films are driven by the interplay of intra and intermolecular interactions in which the π-stacking between the oligothiophene and nucleotide bases plays a major role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stabilization of nanoparticles against their irreversible particle aggregation and oxidation reactions. is a requirement for further advancement in nanoparticle science and technology. For this reason the research aim on this topic focuses on the synthesis of various metal nanoparticles protected with monolayers containing different reactive head groups and functional tail groups. In this work cuprous bromide nanocrystals haave been synthetized with a diameter of about 20 nanometers according to a new sybthetic method adding dropwise ascorbic acid to a water solution of lithium bromide and cupric chloride under continuous stirring and nitrogen flux. Butane thiolate Cu protected nanoparticles have been synthetized according to three different syntesys methods. Their morphologies appear related to the physicochemical conditions during the synthesis and to the dispersing medium used to prepare the sample. Synthesis method II allows to obtain stable nanoparticles of 1-2 nm in size both isolated and forming clusters. Nanoparticle cluster formation was enhanced as water was used as dispersing medium probably due to the idrophobic nature of the butanethiolate layers coating the nanoparticle surface. Synthesis methods I and III lead to large unstable spherical nanoparticles with size ranging between 20 to 50 nm. These nanoparticles appeared in the TEM micrograph with the same morphology independently on the dispersing medium used in the sample preparation. The stability and dimensions of the copper nanoparticles appear inversely related. Using the same methods above described for the butanethiolate protected copper nanoparticles 4-methylbenzenethiol protected copper nanoparticles have been prepared. Diffractometric and spectroscopic data reveal that decomposition processes didn’t occur in both the 4-methylbenzenethiol copper protected nanoparticles precipitates from formic acid and from water in a period of time six month long. Se anticarcinogenic effects by multiple mechanisms have been extensively investigated and documented and Se is defined a genuine nutritional cancer-protecting element and a significant protective effect of Se against major forms of cancer. Furthermore phloroglucinol was found to possess cytoprotective effects against oxidative stress, thanks to reactive oxygen species (ROS) which are associated with cells and tissue damages and are the contributing factors for inflammation, aging, cancer, arteriosclerosis, hypertension and diabetes. The goal of our work has been to set up a new method to synthesize in mild conditions amorphous Se nanopaticles surface capped with phloroglucinol, which is used during synthesis as reducing agent to obtain stable Se nanoparticles in ethanol, performing the synergies offered by the specific anticarcinogenic properties of Se and the antioxiding ones of phloroalucinol. We have synthesized selenium nanoparticles protected by phenolic molecules chemically bonded to their surface. The phenol molecules coating the nanoparticles surfaces form low ordered arrays as can be seen from the wider shape of the absorptions in the FT-IR spectrum with respect to those appearing in that of crystalline phenol. On the other hand, metallic nanoparticles with unique optical properties, facile surface chemistry and appropriate size scale are generating much enthusiasm in nanomedicine. In fact Au nanoparticles has immense potential for both cancer diagnosis and therapy. Especially Au nanoparticles efficiently convert the strongly adsorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. According to the about, metal nanoparticles-HA nanocrystals composites should have tremendous potential in novel methods for therapy of cancer. 11 mercaptoundecanoic surface protected Au4Ag1 nanoparticles adsorbed on nanometric apathyte crystals we have successfully prepared like an anticancer nanoparticles deliver system utilizing biomimetic hydroxyapatyte nanocrystals as deliver agents. Furthermore natural chrysotile, formed by densely packed bundles of multiwalled hollow nanotubes, is a mineral very suitable for nanowires preparation when their inner nanometer-sized cavity is filled with a proper material. Bundles of chrysotile nanotubes can then behave as host systems, where their large interchannel separation is actually expected to prevent the interaction between individual guest metallic nanoparticles and act as a confining barrier. Chrysotile nanotubes have been filled with molten metals such as Hg, Pb, Sn, semimetals, Bi, Te, Se, and with semiconductor materials such as InSb, CdSe, GaAs, and InP using both high-pressure techniques and metal-organic chemical vapor deposition. Under hydrothermal conditions chrysotile nanocrystals have been synthesized as a single phase and can be utilized as a very suitable for nanowires preparation filling their inner nanometer-sized cavity with metallic nanoparticles. In this research work we have synthesized and characterized Stoichiometric synthetic chrysotile nanotubes have been partially filled with bi and monometallic highly monodispersed nanoparticles with diameters ranging from 1,7 to 5,5 nm depending on the core composition (Au, Au4Ag1, Au1Ag4, Ag). In the case of 4 methylbenzenethiol protected silver nanoparticles, the filling was carried out by convection and capillarity effect at room temperature and pressure using a suitable organic solvent. We have obtained new interesting nanowires constituted of metallic nanoparticles filled in inorganic nanotubes with a inner cavity of 7 nm and an isolating wall with a thick ranging from 7 to 21 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zusammenfassung Nanokomposite aus Polymeren und Schichtsilikaten werden zumeist auf der Basis natürlicher Tone wie Montmorillonit hergestellt. Für NMR- und EPR-Untersuchungen der Tensidschicht, die das Silikat mit dem Polymer kompatibilisiert, ist der Eisengehalt natürlicher Tone jedoch abträglich, weil er zu einer Verkürzung der Relaxationszeiten und zu einer Linienverbreiterung in den Spektren führt. Dieses Problem konnte überwunden werden, indem als Silikatkomponente eisenfreies, strukturell wohldefiniertes Magadiit hydrothermal synthetisiert und für die Kompositbildung eingesetzt wurde. Die Morphologie des Magadiits wurde durch Rasterelektronenmikroskopie charakterisiert und der Interkalationsgrad von schmelzinterkalierten Polymer-Nanokompositen wurde durch Weitwinkelröntgenstreuung bestimmt. Polymere mit Carbonylgruppen scheinen leichter zu interkalieren als solche ohne Carbonylgruppen. Polycaprolacton interkalierte sowohl in Oragnomagadiite auf der Basis von Ammoniumtensiden als auch in solche auf der Basis von Phosphoniumtensiden. Die Dynamik auf einer Nanosekundenzeitskala und die Struktur der Tensidschicht wurden mittels ortsspezifisch spinmarkierter Tensidsonden unter Nutzung von Dauerstrich- (CW) und Puls-Methoden der elektronenparamagnetischen Resonanzspektroskopie (EPR) untersucht. Zusätzlich wurde die statische 2H-Kernmagnetresonanz (NMR) an spezifisch deuterierten Tensiden angewendet, um die Tensiddynamik auf einer komplementären Zeitskala zwischen Mikrosekunden und Millisekunden zu erfassen. Sowohl die CW-EPR- als auch die 2H-NMR-Ergebnisse zeigen eine Beschleunigung der Tensiddynamik durch Interkalation von Polycaprolacton auf, während sich in den nichtinterkalierten Mikrokompositen mit Polystyrol die Tensiddynamik verlangsamt. Die Rotationskorrelationszeiten und Aktivierungsenergien offenbaren verschiedene Regime der Tensiddynamik. In Polystyrol-Mikrokompositen entspricht die Übergangstemperatur zwischen den Regimen der Glasübergangstemperatur von Polystyrol, während sie in Polycaprolacton-Nanokompositen bei der Schmelztemperatur von Polycaprolacton liegt. Durch die erhebliche Verlängerung der Elektronenspin-Relaxationszeiten bei Verwendung von eisenfreiem Magadiit können Messdaten hoher Qualität mit Puls-EPR-Experimenten erhalten werden. Insebsondere wurden die Vier-Puls-Elektron-Elektron-Doppelresonanz (DEER), die Elektronenspinechoenveloppenmodulation (ESEEM) und die Elektronen-Kern-Doppelresonanz (ENDOR) an spinmarkierten sowie spezifisch deuterierten Tensiden angewandt. Die ENDOR-Ergebnisse legen ein Model der Tensidschicht nahe, in dem zusätzlich zu den Oberflächenlagen auf dem Silikat eine wohldefinierte mittlere Lage existiert. Dieses Modell erklärt auch Verdünnungseffekte durch das Polymer in Kompositen mit Polycaprolacton und Polystyrol. Die umfangreiche Information aus den Magnetresonanztechniken ergänzt die Information aus konventionellen Charakterisierungstechniken wie Röntgendiffraktion und Transmissionselektronenmikroskopie und führt so zu einem detaillierteren Bild der Struktur und Dynamik der Tensidschicht in Nanokompositen aus Polymeren und Schichtsilikaten.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The needed of new intermediates/products for screening in the fields of drug discovery and material science is the driving force behind the development of new methodologies and technologies. Organic scaffolds are privileged targets for this scouting. Among them a priority place must be attributed to those including nitrogen functionalities in their scaffolds. It comes out that new methodologies, allowing the introduction of the nitrogen atom for the synthesis of an established target or for the curiosity driven researches, will always be welcome. The target of this PhD Thesis’ work is framed within this goal. Accordingly, Chapter 1 reports the preparation of new N-Heteroarylmethyl 3-carboxy-5-hydroxy piperidine scaffold, as potential and selective α-glucosidase inhibitors. The proposed reversible uncompetitive mechanism of inhibition makes them attractive as interesting candidate for drug development. Chapter 2 is more environmentally method-driven research. Eco-friendly studies on the synthesis of enantiomerically pure 1,4-dihydropyridines using “solid” ammonia (magnesium nitride) is reported via classical Hantzch method. Chapter 3 and Chapter 4 may be targeted as the core of the Thesis’s research work. Chapter 3 reports the studies addressed to the synthesis of N-containing heterocycles by using N-trialkylsilylimine/hetero-Diels–Alder (HAD) approach. New eco-friendly methodology as MAOS (Microwave Assisted Organic Synthesis) has been used as witness of our interest to a sustainable chemistry. Theoretical calculations were adopted to fully clarify the reaction mechanism. Chapter 4 is dedicated to picture the most recent studies performed on the application of N-Metallo-ketene imines (metallo= Si, Sn, Al), relatively new intermediates which are becoming very popular, in the preparation of highly functionalized N-containing derivatives, accordingly to the Thesis’ target. Derivatives obtained are designed in such a way that they could be of interest in the field of drug and new material chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past years, genome biology had disclosed an ever-growing kind of biological targets that emerged as ideal points for therapeutic intervention. Nevertheless, the number of new chemical entities (NCEs) translated into effective therapies employed in the clinic, still not observed. Innovative strategies in drug discovery combined with different approaches to drug design should be searched for bridge this gap. In this context organic synthetic chemistry had to provide for effective strategies to achieve biologically active small molecules to consider not only as potentially drug candidates, but also as chemical tools to dissect biological systems. In this scenario, during my PhD, inspired by the Biology-oriented Synthesis approach, a small library of hybrid molecules endowed with privileged scaffolds, able to block cell cycle and to induce apoptosis and cell differentiation, merged with natural-like cores were synthesized. A synthetic platform which joined a Domino Knoevenagel-Diels Alder reaction with a Suzuki coupling was performed in order to reach the hybrid compounds. These molecules can represent either antitumor lead candidates, or valuable chemical tools to study molecular pathways in cancer cells. The biological profile expressed by some of these derivatives showed a well defined antiproliferative activity on leukemia Bcr-Abl expressing K562 cell lines. A parallel project regarded the rational design and synthesis of minimally structurally hERG blockers with the purpose of enhancing the SAR studies of a previously synthesized collection. A Target-Oriented Synthesis approach was applied. Combining conventional and microwave heating, the desired final compounds were achieved in good yields and reaction rates. The preliminary biological results of the compounds, showed a potent blocking activity. The obtained small set of hERG blockers, was able to gain more insight the minimal structural requirements for hERG liability, which is mandatory to investigate in order to reduce the risk of potential side effects of new drug candidates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atom efficient phospha-Michael reaction between bis 4-methylphenyl phosphine oxide and several activated internal alkenes has been shown to occur under microwave irradiation without added solvent or catalyst. The alkenes used for this study were ethyl 4-nitrocinnamate, two chalcones ((E)-3-(4-methoxy-phenyl)-1-(4- nitrophenyl)-prop-2-en-1-one and (E)-1-(4-methoxyphenyl)-3-(3-nitro-phenyl)-prop-2- en-1-one), and 2-phenylmethylene-propanedinitrile. In the case of ethyl 4-nitrocinnamate, reaction with bis 4-methylphenyl phosphine oxide for sixty minutes at 130 °C yielded the desired phospha-Michael product in a 55% yield after purification. Varying the location of the nitro group on the phenyl rings of the chalcones did not seem to have a large effect on their reactivity. By NMR, both chalcones seemed to react to the same extent when the reaction times and temperatures were held constant. Interestingly, a phospha-Michael reaction was observed at a reaction temperature of 65°C for experiments involving 2- phenyl-methylene-propanedinitrile while the other substrates required a reaction temperature of 130 °C. Similar experiments were carried out with bis mesityl phosphine oxide and two internal alkenes: 2-phenylmethylene-propanedinitrile and ethyl-2-cyano-3- methyl-2-butenoate. These experiments did not yield any of the predicted phospha- Michael products, which suggest steric limitations to the Michael donor for this reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Δ(9)-tetrahydrocannabinol (Δ(9)-THC) is the major psychoactive cannabinoid in hemp (Cannabis sativa L.) and responsible for many of the pharmacological effects mediated via cannabinoid receptors. Despite being the major cannabinoid scaffold in nature, Δ(9)-THC double bond isomers remain poorly studied. The chemical scaffold of tetrahydrocannabinol can be assembled from the condensation of distinctly substituted phenols and monoterpenes. Here we explored a microwave-assisted one pot heterogeneous synthesis of Δ(3)-THC from orcinol (1a) and pulegone (2). Four Δ(3)-THC analogues and corresponding Δ(4a)-tetrahydroxanthenes (Δ(4a)-THXs) were synthesized regioselectively and showed differential binding affinities for CB1 and CB2 cannabinoid receptors. Here we report for the first time the CB1 receptor binding of Δ(3)-THC, revealing a more potent receptor binding affinity for the (S)-(-) isomer (hCB1Ki = 5 nM) compared to the (R)-(+) isomer (hCB1Ki = 29 nM). Like Δ(9)-THC, also Δ(3)-THC analogues are partial agonists at CB receptors as indicated by [(35)S]GTPγS binding assays. Interestingly, the THC structural isomers Δ(4a)-THXs showed selective binding and partial agonism at CB2 receptors, revealing a simple non-natural natural product-derived scaffold for novel CB2 ligands.