958 resultados para Microarray, SNPs, forensisch, Single Nucletide Polymorphisms, Multiplex
Resumo:
Is species diversification driven by neutral- or niche-based processes? Butterflies of the Lycaenidae family have developed mutualistic interactions with ants. This biotic requirement increased the spatial fragmentation of populations of lower effective population size (Ne) compared with autonomous species. The nearly neutral theory predicts that species with smaller Ne should fix more mutations because of the increased strength of drift. Taking into account the phylogenetic relatedness among species, this study shows that species with a stronger dependence on ants displayed more intra-specific Single Nucleotide Polymorphisms compared with species with low or no myrmecophily. This phenomenon can cause more pronounced genetic differentiation between populations and could ultimately promote speciation in a similar manner as on physical islands. The large species diversity observed in this family could be the consequence of this neutral process enhancing the diversification of lineages.
Resumo:
Hypertension is an important determinant of cardiovascular morbidity and mortality and has a substantial heritability, which is likely of polygenic origin. The aim of this study was to assess to what extent multiple common genetic variants contribute to blood pressure regulation in both adults and children and to assess overlap in variants between different age groups, using genome-wide profiling. Single nucleotide polymorphism sets were defined based on a meta-analysis of genome-wide association studies on systolic blood pressure and diastolic blood pressure performed by the Cohort for Heart and Aging Research in Genome Epidemiology (n=29 136), using different P value thresholds for selecting single nucleotide polymorphisms. Subsequently, genetic risk scores for systolic blood pressure and diastolic blood pressure were calculated in an independent adult population (n=2072) and a child population (n=1034). The explained variance of the genetic risk scores was evaluated using linear regression models, including sex, age, and body mass index. Genetic risk scores, including also many nongenome-wide significant single nucleotide polymorphisms, explained more of the variance than scores based only on very significant single nucleotide polymorphisms in adults and children. Genetic risk scores significantly explained ≤1.2% (P=9.6*10(-8)) of the variance in adult systolic blood pressure and 0.8% (P=0.004) in children. For diastolic blood pressure, the variance explained was similar in adults and children (1.7% [P=8.9*10(-10)] and 1.4% [P=3.3*10(-5)], respectively). These findings suggest the presence of many genetic loci with small effects on blood pressure regulation both in adults and children, indicating also a (partly) common polygenic regulation of blood pressure throughout different periods of life.
Resumo:
Cartilage-hair hypoplasia (CHH) is a pleiotropic disease caused by recessive mutations in the RMRP gene that result in a wide spectrum of manifestations including short stature, sparse hair, metaphyseal dysplasia, anemia, immune deficiency, and increased incidence of cancer. Molecular diagnosis of CHH has implications for management, prognosis, follow-up, and genetic counseling of affected patients and their families. We report 20 novel mutations in 36 patients with CHH and describe the associated phenotypic spectrum. Given the high mutational heterogeneity (62 mutations reported to date), the high frequency of variations in the region (eight single nucleotide polymorphisms in and around RMRP), and the fact that RMRP is not translated into protein, prediction of mutation pathogenicity is difficult. We addressed this issue by a comparative genomic approach and aligned the genomic sequences of RMRP gene in the entire class of mammals. We found that putative pathogenic mutations are located in highly conserved nucleotides, whereas polymorphisms are located in non-conserved positions. We conclude that the abundance of variations in this small gene is remarkable and at odds with its high conservation through species; it is unclear whether these variations are caused by a high local mutation rate, a failure of repair mechanisms, or a relaxed selective pressure. The marked diversity of mutations in RMRP and the low homozygosity rate in our patient population indicate that CHH is more common than previously estimated, but may go unrecognized because of its variable clinical presentation. Thus, RMRP molecular testing may be indicated in individuals with isolated metaphyseal dysplasia, anemia, or immune dysregulation.
Resumo:
Urotensin-II controls ion/water homeostasis in fish and vascular tone in rodents. We hypothesised that common genetic variants in urotensin-II pathway genes are associated with human blood pressure or renal function. We performed family-based analysis of association between blood pressure, glomerular filtration and genes of the urotensin-II pathway (urotensin-II, urotensin-II related peptide, urotensin-II receptor) saturated with 28 tagging single nucleotide polymorphisms in 2024 individuals from 520 families; followed by an independent replication in 420 families and 7545 unrelated subjects. The expression studies of the urotensin-II pathway were carried out in 97 human kidneys. Phylogenetic evolutionary analysis was conducted in 17 vertebrate species. One single nucleotide polymorphism (rs531485 in urotensin-II gene) was associated with adjusted estimated glomerular filtration rate in the discovery cohort (p = 0.0005). It showed no association with estimated glomerular filtration rate in the combined replication resource of 8724 subjects from 6 populations. Expression of urotensin-II and its receptor showed strong linear correlation (r = 0.86, p<0.0001). There was no difference in renal expression of urotensin-II system between hypertensive and normotensive subjects. Evolutionary analysis revealed accumulation of mutations in urotensin-II since the divergence of primates and weaker conservation of urotensin-II receptor in primates than in lower vertebrates. Our data suggest that urotensin-II system genes are unlikely to play a major role in genetic control of human blood pressure or renal function. The signatures of evolutionary forces acting on urotensin-II system indicate that it may have evolved towards loss of function since the divergence of primates.
Resumo:
Early in the 1990s, several case series described adults suffering from dysphagia and children with refractory reflux symptoms, both accompanied by an eosinophil-predominant infiltration, thereby conclusively distinguishing it from gastroesophageal reflux disease. Eosinophilic esophagitis (EoE) was recognized as its own entity in the adult and in the pediatric literature. In the last decade, evidence has accumulated that EoE represents a T-helper (Th)2-type inflammatory disease. Remodeling of the esophagus is a hallmark of EoE, leading to esophageal dysfunction and bolus impaction. Familial occurrence and disease association with single-nucleotide polymorphisms underscore the influence of genetics in this disease. Eosinophilic esophagitis may affect individuals at any age, although the clinical presentation is highly age dependent. There is a significant allergic bias in the EoE population, with the majority of patients having concurrent allergic rhinitis, asthma, eczema, and/or a history of atopy. One noteworthy difference is that in children, EoE seems to be primarily a food antigen-driven disease, whereas in adults, mainly aeroallergen sensitization has been observed. Treatment modalities for EoE include the 3Ds: drugs, diet, and dilation. The crucial question of whether adult and pediatric EoE are different phenotypes of one single entity or whether we are confronted with two different diseases is still open. Here, we review similarities and differences between EoE in adults and children.
Resumo:
The incidence of hepatocellular carcinoma (HCC) is increasing in Western countries. Although several clinical factors have been identified, many individuals never develop HCC, suggesting a genetic susceptibility. However, to date, only a few single-nucleotide polymorphisms have been reproducibly shown to be linked to HCC onset. A variant (rs738409 C>G, encoding for p.I148M) in the PNPLA3 gene is associated with liver damage in chronic liver diseases. Interestingly, several studies have reported that the minor rs738409[G] allele is more represented in HCC cases in chronic hepatitis C (CHC) and alcoholic liver disease (ALD). However, a significant association with HCC related to CHC has not been consistently observed, and the strength of the association between rs738409 and HCC remains unclear. We performed a meta-analysis of individual participant data including 2,503 European patients with cirrhosis to assess the association between rs738409 and HCC, particularly in ALD and CHC. We found that rs738409 was strongly associated with overall HCC (odds ratio [OR] per G allele, additive model=1.77; 95% confidence interval [CI]: 1.42-2.19; P=2.78 × 10(-7) ). This association was more pronounced in ALD (OR=2.20; 95% CI: 1.80-2.67; P=4.71 × 10(-15) ) than in CHC patients (OR=1.55; 95% CI: 1.03-2.34; P=3.52 × 10(-2) ). After adjustment for age, sex, and body mass index, the variant remained strongly associated with HCC. Conclusion: Overall, these results suggest that rs738409 exerts a marked influence on hepatocarcinogenesis in patients with cirrhosis of European descent and provide a strong argument for performing further mechanistic studies to better understand the role of PNPLA3 in HCC development.
Resumo:
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.
Resumo:
Elevated plasma levels of lipoprotein-associated phospholipase A(2) (Lp-PLA2) activity have been shown to be associated with increased risk of coronary heart disease and an inhibitor of this enzyme is under development for the treatment of that condition. A Val279Phe null allele in this gene, that may influence patient eligibility for treatment, is relatively common in East Asians but has not been observed in Europeans. We investigated the existence and functional effects of low frequency alleles in a Western European population by re-sequencing the exons of PLA2G7 in 2000 samples. In all, 19 non-synonymous single-nucleotide polymorphisms (nsSNPs) were found, 14 in fewer than four subjects (minor allele frequency <0.1%). Lp-PLA2 activity was significantly lower in rare nsSNP carriers compared with non-carriers (167.8±63.2 vs 204.6±41.8, P=0.01) and seven variants had enzyme activities consistent with a null allele. The cumulative frequency of these null alleles was 0.25%, so <1 in 10,000 Europeans would be expected to be homozygous, and thus not potentially benefit from treatment with an Lp-PLA2 inhibitor.
Resumo:
Discussion on improving the power of genome-wide association studies to identify candidate variants and genes is generally centered on issues of maximizing sample size; less attention is given to the role of phenotype definition and ascertainment. The authors used genome-wide data from patients infected with human immunodeficiency virus type 1 (HIV-1) to assess whether differences in type of population (622 seroconverters vs. 636 seroprevalent subjects) or the number of measurements available for defining the phenotype resulted in differences in the effect sizes of associations between single nucleotide polymorphisms and the phenotype, HIV-1 viral load at set point. The effect estimate for the top 100 single nucleotide polymorphisms was 0.092 (95% confidence interval: 0.074, 0.110) log(10) viral load (log(10) copies of HIV-1 per mL of blood) greater in seroconverters than in seroprevalent subjects. The difference was even larger when the authors focused on chromosome 6 variants (0.153 log(10) viral load) or on variants that achieved genome-wide significance (0.232 log(10) viral load). The estimates of the genetic effects tended to be slightly larger when more viral load measurements were available, particularly among seroconverters and for variants that achieved genome-wide significance. Differences in phenotype definition and ascertainment may affect the estimated magnitude of genetic effects and should be considered in optimizing power for discovering new associations.
Resumo:
The cytosine deaminase APOBEC3G, in the absence of the human immunodeficiency virus type 1 (HIV-1) accessory gene HIV-1 viral infectivity factor (vif), inhibits viral replication by introducing G-->A hypermutation in the newly synthesized HIV-1 DNA negative strand. We tested the hypothesis that genetic variants of APOBEC3G may modify HIV-1 transmission and disease progression. Single nucleotide polymorphisms were identified in the promoter region (three), introns (two), and exons (two). Genotypes were determined for 3,073 study participants enrolled in six HIV-AIDS prospective cohorts. One codon-changing variant, H186R in exon 4, was polymorphic in African Americans (AA) (f = 37%) and rare in European Americans (f < 3%) or Europeans (f = 5%). For AA, the variant allele 186R was strongly associated with decline in CD4 T cells (CD4 slope on square root scale: -1.86, P = 0.009), The 186R allele was also associated with accelerated progression to AIDS-defining conditions in AA. The in vitro antiviral activity of the 186R enzyme was not inferior to that of the common H186 variant. These studies suggest that there may be a modifying role of variants of APOBEC3G on HIV-1 disease progression that warrants further investigation.
Resumo:
Reference collections of multiple Drosophila lines with accumulating collections of "omics" data have proven especially valuable for the study of population genetics and complex trait genetics. Here we present a description of a resource collection of 84 strains of Drosophila melanogaster whose genome sequences were obtained after 12 generations of full-sib inbreeding. The initial rationale for this resource was to foster development of a systems biology platform for modeling metabolic regulation by the use of natural polymorphisms as perturbations. As reference lines, they are amenable to repeated phenotypic measurements, and already a large collection of metabolic traits have been assayed. Another key feature of these strains is their widespread geographic origin, coming from Beijing, Ithaca, Netherlands, Tasmania, and Zimbabwe. After obtaining 12.5× coverage of paired-end Illumina sequence reads, SNP and indel calls were made with the GATK platform. Thorough quality control was enabled by deep sequencing one line to >100×, and single-nucleotide polymorphisms and indels were validated using ddRAD-sequencing as an orthogonal platform. In addition, a series of preliminary population genetic tests were performed with these single-nucleotide polymorphism data for assessment of data quality. We found 83 segregating inversions among the lines, and as expected these were especially abundant in the African sample. We anticipate that this will make a useful addition to the set of reference D. melanogaster strains, thanks to its geographic structuring and unusually high level of genetic diversity.
Resumo:
Background: Toll-like receptors (TLRs) are critical components for host pathogen recognition and variants in genes participating in this response influence susceptibility to infections. Recently, TLR1 gene polymorphisms have been found correlated with whole blood hyper-inflammatory responses to pathogen-associated molecules and associated with sepsis-associated multiorgan dysfunction and acute lung injury (ALI). We examined the association of common variants of TLR1 gene with sepsis-derived complications in an independent study and with serum levels for four inflammatory biomarker among septic patients. Methodology/Principal Findings: Seven tagging single nucleotide polymorphisms of the TLR1 gene were genotyped in samples from a prospective multicenter case-only study of patients with severe sepsis admitted into a network of intensive care units followed for disease severity. Interleukin (IL)-1 b, IL-6, IL-10, and C-reactive protein (CRP) serum levels were measured at study entry, at 48 h and at 7th day. Alleles -7202G and 248Ser, and the 248Ser-602Ile haplotype were associated with circulatory dysfunction among severe septic patients (0.001<=p <= 0.022), and with reduced IL-10 (0.012<= p <=0.047) and elevated CRP (0.011<= p <=0.036) serum levels during the first week of sepsis development. Additionally, the -7202GG genotype was found to be associated with hospital mortality (p =0.017) and ALI (p =0.050) in a combined analysis with European Americans, suggesting common risk effects among studies Conclusions/Significance: These results partially replicate and extend previous findings, supporting that variants of TLR1 gene are determinants of severe complications during sepsis.
Resumo:
OBJECTIVE: The natural course of chronic hepatitis C varies widely. To improve the profiling of patients at risk of developing advanced liver disease, we assessed the relative contribution of factors for liver fibrosis progression in hepatitis C. DESIGN: We analysed 1461 patients with chronic hepatitis C with an estimated date of infection and at least one liver biopsy. Risk factors for accelerated fibrosis progression rate (FPR), defined as ≥0.13 Metavir fibrosis units per year, were identified by logistic regression. Examined factors included age at infection, sex, route of infection, HCV genotype, body mass index (BMI), significant alcohol drinking (≥20 g/day for ≥5 years), HIV coinfection and diabetes. In a subgroup of 575 patients, we assessed the impact of single nucleotide polymorphisms previously associated with fibrosis progression in genome-wide association studies. Results were expressed as attributable fraction (AF) of risk for accelerated FPR. RESULTS: Age at infection (AF 28.7%), sex (AF 8.2%), route of infection (AF 16.5%) and HCV genotype (AF 7.9%) contributed to accelerated FPR in the Swiss Hepatitis C Cohort Study, whereas significant alcohol drinking, anti-HIV, diabetes and BMI did not. In genotyped patients, variants at rs9380516 (TULP1), rs738409 (PNPLA3), rs4374383 (MERTK) (AF 19.2%) and rs910049 (major histocompatibility complex region) significantly added to the risk of accelerated FPR. Results were replicated in three additional independent cohorts, and a meta-analysis confirmed the role of age at infection, sex, route of infection, HCV genotype, rs738409, rs4374383 and rs910049 in accelerating FPR. CONCLUSIONS: Most factors accelerating liver fibrosis progression in chronic hepatitis C are unmodifiable.
Resumo:
Aim To disentangle the effects of environmental and geographical processes driving phylogenetic distances among clades of maritime pine (Pinus pinaster). To assess the implications for conservation management of combining molecular information with species distribution models (SDMs; which predict species distribution based on known occurrence records and on environmental variables). Location Western Mediterranean Basin and European Atlantic coast. Methods We undertook two cluster analyses for eight genetically defined pine clades based on climatic niche and genetic similarities. We assessed niche similarity by means of a principal component analysis and Schoener's D metric. To calculate genetic similarity, we used the unweighted pair group method with arithmetic mean based on Nei's distance using 266 single nucleotide polymorphisms. We then assessed the contribution of environmental and geographical distances to phylogenetic distance by means of Mantel regression with variance partitioning. Finally, we compared the projection obtained from SDMs fitted from the species level (SDMsp) and composed from the eight clade-level models (SDMcm). Results Genetically and environmentally defined clusters were identical. Environmental and geographical distances explained 12.6% of the phylogenetic distance variation and, overall, geographical and environmental overlap among clades was low. Large differences were detected between SDMsp and SDMcm (57.75% of disagreement in the areas predicted as suitable). Main conclusions The genetic structure within the maritime pine subspecies complex is primarily a consequence of its demographic history, as seen by the high proportion of unexplained variation in phylogenetic distances. Nevertheless, our results highlight the contribution of local environmental adaptation in shaping the lower-order, phylogeographical distribution patterns and spatial genetic structure of maritime pine: (1) genetically and environmentally defined clusters are consistent, and (2) environment, rather than geography, explained a higher proportion of variation in phylogenetic distance. SDMs, key tools in conservation management, better characterize the fundamental niche of the species when they include molecular information.
Influence of M. tuberculosis lineage variability within a clinical trial for pulmonary tuberculosis.
Resumo:
Recent studies suggest that M. tuberculosis lineage and host genetics interact to impact how active tuberculosis presents clinically. We determined the phylogenetic lineages of M. tuberculosis isolates from participants enrolled in the Tuberculosis Trials Consortium Study 28, conducted in Brazil, Canada, South Africa, Spain, Uganda and the United States, and secondarily explored the relationship between lineage, clinical presentation and response to treatment. Large sequence polymorphisms and single nucleotide polymorphisms were analyzed to determine lineage and sublineage of isolates. Of 306 isolates genotyped, 246 (80.4%) belonged to the Euro-American lineage, with sublineage 724 predominating at African sites (99/192, 51.5%), and the Euro-American strains other than 724 predominating at non-African sites (89/114, 78.1%). Uneven distribution of lineages across regions limited our ability to discern significant associations, nonetheless, in univariate analyses, Euro-American sublineage 724 was associated with more severe disease at baseline, and along with the East Asian lineage was associated with lower bacteriologic conversion after 8 weeks of treatment. Disease presentation and response to drug treatment varied by lineage, but these associations were no longer statistically significant after adjustment for other variables associated with week-8 culture status.