996 resultados para Mgo-feo-sio2-al3o3-cr2o3 System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eocene-Oligocene metalliferous sediments and associated lithologies from the central equatorial Pacific are described in detail. Geochemical analyses of 54 sediment and 2 basalt samples are presented for 34 elements. Detailed stratigraphic and statistical analyses of these data, combined with mineralogic studies, indicate the presence of volcanic glass and seven main mineral phases: biogenic calcite and opal, Fe smectite, goethite, dMnO2, carbonate fluorapatite, and barite. Fe smectite formed by reactions between Fe oxyhydroxides and biogenic opal, causing the dissolution of calcite and the precipitation of barite. Diagenesis was oxic. Sediments have rare earth element distributions similar to those in seawater. The metal content of the sediments is related to competition between the supply rates of hydrothermal and biogenic particles, but has been enhanced by early diagenetic processes. Eocene-Oligocene metalliferous sediments compare closely to those currently being deposited in the Bauer Basin and on the flanks of the East Pacific Rise. There is, however, no evidence that they were deposited in close proximity to an active hydrothermal system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Leg 67, the Middle-America Trench transect off Guatemala was drilled across the convergent margin of southern Mexico and Central America south of the Tehuantepec Ridge. The data of Leg 66, north of the Tehuantepec Ridge, and that of Leg 67 provided the opportunity to establish a continuous chronology of airborne volcanic ashes intercalated within the sediments (Aubouin et al., 1979; von Huene et al., 1980). Sites of both expeditions are favorably located for obtaining a good record of the explosive volcanicity of these areas, given the proximity of the volcanic sources and the position of the sites under the prevailing winds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basalt underlying early Campanian chalk at Deep Sea Drilling Project (DSDP) Site 163 is divided into seven extrusive cooling units bounded by glassy margins. The margins have dips of 15° to 70°, suggestive of pillow flows rather than tabular flows. The margins are fresh sideromelane (glass) grading inward to opaque and reddish-brown globules containing microcrystalline material with radial, undulose extinction. Relative to adjacent sideromelane, the reddish-brown globules are enriched in sodium and calcium, whereas the opaque globules are depleted in these elements and enriched in iron and magnesium. It appears that basalt just inside the pillow margins has differentiated in place into globules of two distinct compositions. This globule zone grades inward to less rapidly cooled pyroxene varioles and intergrowths of plagioclase and opaque minerals. In the center of the thicker cooling units, the texture is diabasic. Alteration and calcite vein abundance are greatest at pillow margins and decrease inward; the interior of the thickest cooling unit is only slightly altered, and calcite veins are absent. Chemical analysis of whole rock by atomic absorption spectrophotometry, and of sideromelane by electron microprobe, indicates that the rock is a slightly weathered tholeiite. The atomic absorption analyses, except the one nearest the top of the basalt, are relatively uniform and similar to the sideromelane microprobe analyses, including those near the top of the basalt. This suggests that deep penetration is not necessary to get through the severely altered layer at the basalt surface, and that within this altered layer, analyses of sideromelane may be more representative of crustal composition than analyses of whole rock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifty-two samples of basalt from the four holes drilled on the Leg 81 transect across the Rockall margin were analyzed by X-ray fluorescence for Rb, Sr, Y, Zr, and Nb. On the basis of these results 13 samples were chosen for major and supplementary trace-element analysis. The results show no progressive change in the character of the volcanism, from Hole 555 in the continental domain through Holes 552 and 553A in the dipping reflector sequence to Hole 554A on the outer high. Two distinct magma types are present, apparently reflecting heterogeneity of the underlying mantle, but both types are present in both Holes 553A and 555, while Hole 552 and Hole 554 are each composed of a single type. Both magma types have a clear ocean-floor basalt signature when examined by discrimination diagrams, as does the basalt from Deep Sea Drilling Project Site 112, which formed at the same time as the Leg 81 basalts slightly farther south along the spreading center. In contrast, the basalts of East Greenland, formed at the same time, are more enriched in incompatible elements and have a within-plate geochemical signature, as is found in some basalts of Iceland today. Clearly the present distinction in geochemistry between the basalts of Iceland and those erupting well south on the Reykjanes Ridge was already established when continental splitting took place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distriburtion and formation of clay minerals in different types of bottom sediments from the West Pacific are under consideration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of geological research carried out by V.I. Il'ichev Pacific Oceanological Institute (Far East Division of the Russian Academy of Sciences) and P.P. Shirshov Institute of Oceanology (Russian Academy of Sciences) on the submarine Vityaz Ridge during Cruise 37 of R/V Akademik Lavrentyev in 2005 are discussed. Various rocks composing the basement and the sedimentary cover of the ridge were dredged in three areas. Based on isotope geochronology, petrogeochemical, petrographic, and paleontological data and comparison with similar rocks available from the adjacent land and the Sea of Okhotsk, they are subdivided into several age complexes. Late Cretaceous, Eocene, Late Oligocene, Miocene, and Pliocene-Pleistocene complexes are defined among igneous rocks, while volcanogenic-sedimentary rocks are united into Late Cretaceous - Early Paleocene (Late Campanian - Danian), undivided Paleogene (Paleocene-Eocene?), Oligocene - Early Miocene, and Pliocene-Pleistocene complexes. Obtained data on age and formation settings of the defined complexes allowed to reconstruct geological evolution of the central Pacific slope of the Kurile Island arc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kimmeridge Clay Formation (KCF) and its equivalents worldwide represent one of the most prolonged periods of organic carbon accumulation of the Mesozoic. In this study, we use the molybdenum (Mo) stable isotope system in conjunction with a range of trace metal paleoredox proxies to assess how seawater redox varied both locally and globally during the deposition of the KCF. Facies with lower organic carbon contents (TOC 1-7 wt %) were deposited under mildly reducing (suboxic) conditions, while organic-rich facies (TOC >7 wt %) accumulated under more strongly reducing (anoxic or euxinic) local conditions. Trace metal abundances are closely linked to TOC content, suggesting that the intensity of reducing conditions varied repeatedly during the deposition of the KCF and may have been related to orbitally controlled climate changes. Long-term variations in d98/95Mo are associated with the formation of organic-rich intervals and are related to third-order fluctuations in relative sea level. Differences in the mean d98/95Mo composition of the organic-rich intervals suggest that the global distribution of reducing conditions was more extensive during the deposition of the Pectinatites wheatleyensis and lower Pectinatites hudlestoni zones than during the deposition of the upper Pectinatites hudlestoni and Pectinatites pectinatus zones. The global extent of reducing conditions during the Kimmerigidan was greater than today but was less widespread than during the Toarcian (Early Jurassic) oceanic anoxic event. This study also demonstrates that the Mo isotope system in Jurassic seawater responded to changes in redox conditions in a manner consistent with its behavior in present-day sedimentary environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here chemical analyses of sulfide and other minerals occurring in the massive sulfide deposit cored at Site 471. Details of the mineralogy and inferred paragenesis of the deposit will be reported elsewhere. The sulfide deposit at Site 471 occurs between overlying pelagic sediment and underlying basalt. The deposit is vertically zoned and consists, from top to bottom, of the following mineral assemblages: (1) pyrite, chalcopyrite, and Zn-sulfide in chert and calcite gangue (about 35 cm thick); (2) a 5-cm-thick metalliferous sediment layer described in detail by Leinen (this volume); and (3) a 4-cm-thick chert layer. The overlying sediment is a calcareous silty claystone that contains middle Miocene coccoliths (Bukry, this volume). The underlying basalt has been extensively chloritized and veined with calcite. In places feldspars are albitized, and calcite occurs as pseudomorphs after olivine. Relict textures suggest that the basalt grades into diabase and gabbro with increasing depth. Neither stock work nor disseminated sulfides was observed in the altered rocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A drilling transect across the sedimented eastern flank of the Juan de Fuca Ridge, conducted during Leg 168 of the Ocean Drilling Program, resulted in the recovery of samples of volcanic basement rocks (pillow basalts, massive basalts, and volcanic glass breccias) that exhibit the effects of low-temperature hydrothermal alteration. Secondary clays are ubiquitous, with Mg-rich and Fe-rich saponite and celadonitic clays commonly accounting for several percent, and up to 10%-20% by volume. Present-day temperatures of the basement sites vary from 15° to 64°C, with the coolest site being about 0.8 Ma, and the warmest site being about 3.5 Ma. Whereas clays are abundant at sites that have been heated to present temperatures of 23°C and higher, the youngest site at 15°C has only a small trace of secondary clay alteration. Alteration increases as temperatures increase and as the volcanic basement ages. The chemical compositions of secondary clays were determined by electron microprobe, and additional trace element data were determined by both conventional nebulization inductively coupled plasma-mass spectroscopy (ICP-MS) and laser-ablation ICP-MS. Trioctahedral saponite and pyrite are characteristic of the interior of altered rock pieces, forming under conditions of low-oxygen fugacity. Dioctahedral celadonite-like clays along with iron oxyhydroxide and Mg-saponite are characteristic of oxidized haloes surrounding the nonoxidized rock interiors. Chemical compositions of the clays are very similar to those determined from other deep-sea basalts altered at low temperature. The variable Mg:Fe of saponite appears to be a systematic function both of the Mg:Fe of the host rock and the oxidation state during water-rock interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Examining volcanic materials in deep sea sediments may be one of the most important tasks of the Deep Sea Drilling Project. The investigation of volcanic ash near young source volcanoes is particularly helpful in enabling us to infer the history of volcanism in and around the island arcs. In the area of the Japanese islands volcanic deposits are usually distributed east of the source by prevailing westerly winds. It is also possible that some deep sea tephra has its source in a large, already known land volcanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The book is devoted to comprehensive study of composition of sediments from the North Pacific Ocean. The sediments have been divided characterized by their lithologic and facial types, grain size composition and mineralogy. Influence of volcanism on formation of mineral and chemical composition of these sediments has been shown. Regularities of distribution of sediment accumulation rates and of a number of chemical elements on the Transpacific profile have been found. Determining role of mechanical fractionation in their localization has been shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-resolution marine isotope climate record indicates pronounced global cooling during the Langhian (16-13.8 Ma), beginning with the warm middle Miocene climatic optimum and ending with significant Antarctic ice sheet expansion and the transition to "icehouse" conditions. Terrestrial paleoclimate data from this interval is sparse and sometimes conflicting. In particular, there are gaps in the terrestrial record in the Pacific Northwest during the late Langhian and early Serravallian between about 14.5 and 12.5 Ma. New terrestrial paleoclimate data from this time and region could reconcile these conflicting records. Paleosols are particularly useful for reconstructing paleoenvironment because the rate and style of pedogenesis is primarily a function of surface environmental conditions; however, complete and well-preserved paleosols are uncommon. Most soils form in erosive environments that are not preserved, or in environments such as floodplains that accumulate in small increments; the resulting cumulic soils are usually thin, weakly developed, and subject to diagenetic overprinting from subsequent soils. The paleosol at Cricket Flat in northeastern Oregon is an unusually complete and well-preserved paleosol from a middle Miocene volcanic sequence in the Powder River Volcanic Field. An olivine basalt flow buried the paleosol at approximately 13.8 ± 0.6 Ma, based on three 40Ar/39Ar dates on the basalt. We described the Cricket Flat paleosol and used its physical and chemical profile and micromorphology to assess pedogenesis. The Cricket Flat paleosol is an Ultisol-like paleosol, chemically consistent with a high degree of weathering. Temperature and rainfall proxies suggest that Cricket Flat received 1120 ± 180 mm precipitation y-1 and experienced a mean annual temperature of 14.5 ± 2.1 °C during the formation of the paleosol, significantly warmer and wetter than today. This suggests slower cooling after the middle Miocene climatic optimum than is seen in the existing paleosol record.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleosols crop out in the Sukhona River valley as several members up to 10 m thick embedded into the Salarevo Formation sediments. Principal characteristics of the paleosols include a dense network of root channels, indications of eluvial gley alteration, redistribution and formation of secondary carbonates represented by several generations, and formation of block-prismatic soil structure with specific clayey films at structural jointing faces. The paleosols are divided into a number of genetically interrelated horizons (from top to bottom): presumably organogenic accumulation (AElg), eluvial gley horizon (Elg), illuvial horizons (B1 and B2), illuvial gley horizon (Bg), and transitional horizons (ElBg and BElg). The paleosols formed under conditions of a semiarid climate with sharp seasonal or secular and multisecular oscillations of atmospheric precipitation. Such soils point to specific ecological environments existed in the northern semiarid belt of the Earth before the greatest (in Phanerozoic) biospheric crisis at the Permian-Triassic boundary.