972 resultados para Metal structures
Resumo:
Transition metal-free magnetism and half-metallicity recently has been the subject of intense research activity due to its potential in spintronics application. Here we, for the first time, demonstrate via density functional theory that the most recently experimentally realized graphitic carbon nitride (g-C4N3) displays a ferromagnetic ground state. Furthermore, this novel material is predicted to possess an intrinsic half-metallicity never reported to date. Our results highlight a new promising material toward realistic metal-free spintronics application.
Resumo:
Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring.
Resumo:
This paper investigates the response of multi-storey structures under simulated earthquake loads with friction dampers, viscoelastic dampers and combined friction-viscoelastic damping devices strategically located within shear walls. Consequently, evaluations are made as to how the damping systems affect the seismic response of these structures with respect to deflections and accelerations. In particular, this paper concentrates on the effects of damper types, configurations and their locations within the cut-outs of shear walls. The initial stiffness of the cut out section of the shear wall is removed and replaced by the stiffness and damping of the device. Influence of parameters of damper properties such as stiffness, damping coefficient, location, configuration and size are studied and evaluated using results obtained under several different earthquake scenarios. Structural models with cut outs at different heights are treated in order to establish the effectiveness of the dampers and their optimal placement. This conceptual study has demonstrated the feasibility of mitigating the seismic response of building structures by using embedded dampers.
Resumo:
Background Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this work is twofold: one is to propose a novel individual feature extraction method; another is to develop an ensemble method to improve prediction performance using comprehensive information represented in the form of high dimensional feature vector obtained by 11 feature extraction methods. Methodology/Principal Findings A novel two-stage multiclass support vector machine is proposed to predict protein subnuclear localizations. It only considers those feature extraction methods based on amino acid classifications and physicochemical properties. In order to speed up our system, an automatic search method for the kernel parameter is used. The prediction performance of our method is evaluated on four datasets: Lei dataset, multi-localization dataset, SNL9 dataset and a new independent dataset. The overall accuracy of prediction for 6 localizations on Lei dataset is 75.2% and that for 9 localizations on SNL9 dataset is 72.1% in the leave-one-out cross validation, 71.7% for the multi-localization dataset and 69.8% for the new independent dataset, respectively. Comparisons with those existing methods show that our method performs better for both single-localization and multi-localization proteins and achieves more balanced sensitivities and specificities on large-size and small-size subcellular localizations. The overall accuracy improvements are 4.0% and 4.7% for single-localization proteins and 6.5% for multi-localization proteins. The reliability and stability of our classification model are further confirmed by permutation analysis. Conclusions It can be concluded that our method is effective and valuable for predicting protein subnuclear localizations. A web server has been designed to implement the proposed method. It is freely available at http://bioinformatics.awowshop.com/snlpred_page.php.
Resumo:
Traffic congestion has a significant impact on the economy and environment. Encouraging the use of multimodal transport (public transport, bicycle, park’n’ride, etc.) has been identified by traffic operators as a good strategy to tackle congestion issues and its detrimental environmental impacts. A multi-modal and multi-objective trip planner provides users with various multi-modal options optimised on objectives that they prefer (cheapest, fastest, safest, etc) and has a potential to reduce congestion on both a temporal and spatial scale. The computation of multi-modal and multi-objective trips is a complicated mathematical problem, as it must integrate and utilize a diverse range of large data sets, including both road network information and public transport schedules, as well as optimising for a number of competing objectives, where fully optimising for one objective, such as travel time, can adversely affect other objectives, such as cost. The relationship between these objectives can also be quite subjective, as their priorities will vary from user to user. This paper will first outline the various data requirements and formats that are needed for the multi-modal multi-objective trip planner to operate, including static information about the physical infrastructure within Brisbane as well as real-time and historical data to predict traffic flow on the road network and the status of public transport. It will then present information on the graph data structures representing the road and public transport networks within Brisbane that are used in the trip planner to calculate optimal routes. This will allow for an investigation into the various shortest path algorithms that have been researched over the last few decades, and provide a foundation for the construction of the Multi-modal Multi-objective Trip Planner by the development of innovative new algorithms that can operate the large diverse data sets and competing objectives.
Resumo:
Based on theoretical prediction, a g-C3N4@carbon metal-free oxygen reduction reaction (ORR) electrocatalyst was designed and synthesized by uniform incorporation of g-C3N4 into a mesoporous carbon to enhance the electron transfer efficiency of g-C3N4. The resulting g-C3N4@carbon composite exhibited competitive catalytic activity (11.3 mA cm–2 kinetic-limiting current density at −0.6 V) and superior methanol tolerance compared to a commercial Pt/C catalyst. Furthermore, it demonstrated significantly higher catalytic efficiency (nearly 100% of four-electron ORR process selectivity) than a Pt/C catalyst. The proposed synthesis route is facile and low-cost, providing a feasible method for the development of highly efficient electrocatalysts.
Resumo:
Pt/anodized TiO2/SiC based metal-oxide-semiconductor (MOS) devices were fabricated and characterized for their sensitivity towards propene (C3H6). Titanium (Ti) thin films were deposited onto the SiC substrates using a filtered cathodic vacuum arc (FCVA) method. Fluoride ions containing neutral electrolyte (0.5 wt% NH4F in ethylene glycol)were used to anodize the Ti films. The anodized films were subsequently annealed at 600 °C for 4 hrs in an oxygen rich environment to obtain TiO2. The current-voltage(I-V) characteristics of the Pt/TiO2/SiC devices were measured in different concentrations of propene. Exposure to the analyte gas caused a change in the Schottky barrier height and hence a lateral shift in the I-V characteristics. The effective change in the barrier height for 1% propene was calculated as 32.8 meV at 620°C. The dynamic response of the sensors was also investigated and a voltage shift of 157 mV was measured at 620°C during exposure to 1% propene.
Resumo:
This article reports on the design and implementation of a computer-aided sheet nesting system (CASNS) for the nesting of two-dimensional irregular-shaped sheet-metal blanks on a given sheet stock or coil stock. The system is designed by considering several constraints of sheet-metal stamping operations, such as bridge width and grain orientation, and design requirements such as maximizing the strength of the part hen subsequent bending is involved, minimization of scrap, and economic justification for'a single or multiple station operation. Through many practical case studies, the system proves its efficiency, effectiveness and usefulness.
Resumo:
This article reports on the design and implementation of a Computer-Aided Die Design System (CADDS) for sheet-metal blanks. The system is designed by considering several factors, such as the complexity of blank geometry, reduction in scrap material, production requirements, availability of press equipment and standard parts, punch profile complexity, and tool elements manufacturing method. The interaction among these parameters and how they affect designers' decision patterns is described. The system is implemented by interfacing AutoCAD with the higher level languages FORTRAN 77 and AutoLISP. A database of standard die elements is created by parametric programming, which is an enhanced feature of AutoCAD. The greatest advantage achieved by the system is the rapid generation of the most efficient strip and die layouts, including information about the tool configuration.
Resumo:
The structures of the anhydrous proton-transfer compounds of the sulfa drug sulfamethazine with 5-nitrosalicylic acid and picric acid, namely 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, C12H15N4O2S(+)·C7H4NO4(-), (I), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, C12H15N4O2S(+)·C6H2N3O7(-), (II), respectively, have been determined. In the asymmetric unit of (I), there are two independent but conformationally similar cation-anion heterodimer pairs which are formed through duplex intermolecular N(+)-H...Ocarboxylate and N-H...Ocarboxylate hydrogen-bond pairs, giving a cyclic motif [graph set R2(2)(8)]. These heterodimers form separate and different non-associated substructures through aniline N-H...O hydrogen bonds, one one-dimensional, involving carboxylate O-atom acceptors, the other two-dimensional, involving both carboxylate and hydroxy O-atom acceptors. The overall two-dimensional structure is stabilized by π-π interactions between the pyrimidinium ring and the 5-nitrosalicylate ring in both heterodimers [minimum ring-centroid separation = 3.4580 (8) Å]. For picrate (II), the cation-anion interaction involves a slightly asymmetric chelating N-H...O R2(1)(6) hydrogen-bonding association with the phenolate O atom, together with peripheral conjoint R1(2)(6) interactions between the same N-H groups and O atoms of the ortho-related nitro groups. An inter-unit amine N-H...Osulfone hydrogen bond gives one-dimensional chains which extend along a and inter-associate through π-π interactions between the pyrimidinium rings [centroid-centroid separation = 3.4752 (9) Å]. The two structures reported here now bring to a total of four the crystallographically characterized examples of proton-transfer salts of sulfamethazine with strong organic acids.
Resumo:
There has been much discussion and controversy in the media recently regarding metal toxicity following large head metal on metal (MoM) total hip replacement (THR). Patients have been reported as having hugely elevated levels of metal ions with, at times, devastating systemic, neurolgical and/or orthopaedic sequelae. However, no direct correlation between metal ion level and severity of metallosis has yet been defined. Normative levels of metal ions in well functioning, non Cobalt-Chrome hips have also not been defined to date. The Exeter total hip replacement contains no Cobalt-Chrome (Co-Cr) as it is made entirely from stainless steel. However, small levels of these metals may be present in the modular head of the prosthesis, and their effect on metal ion levels in the well functioning patient has not been investigated. We proposed to define the “normal” levels of metal ions detected by blood test in 20 well functioning patients at a minimum 1 year post primary Exeter total hip replacement, where the patient had had only one joint replaced. Presently, accepted normal levels of blood Chromium are 10–100 nmol/L and plasma Cobalt are 0–20 nmol/L. The UK Modern Humanities Research Association (MHRA) has suggested that levels of either Cobalt or Chromium above 7 ppb (equivalent to 135 nmol/L for Chromium and 120 nmol/L for Cobalt) may be significant. Below this level it is indicated that significant soft tissue reaction and tissue damage is less likely and the risk of implant failure is reduced. Hips were a mixture of cemented and hybrid procedures performed by two experienced orthopaedic consultants. Seventy percent were female, with a mixture of head sizes used. In our cohort, there were no cases where the blood Chromium levels were above the normal range, and in more than 70% of cases, levels were below recordable levels. There were also no cases of elevated plasma Cobalt levels, and in 35% of cases, levels were negligible. We conclude that the implantation with an Exeter total hip replacement does not lead to elevation of blood metal ion levels.
'Information in context' : co-designing workplace structures and systems for organizational learning
Resumo:
With the aim of advancing professional practice through better understanding how to create workplace contexts that cultivate individual and collective learning through situated 'information in context' experiences, this paper presents insights gained from three North American collaborative design (co-design) implementations. In the current project at the Auraria Library in Denver, Colorado, USA, participants use collaborative information practices to redesign face-to-face and technology-enabled communication, decision making, and planning systems. Design processes are described and results-to-date described, within an appreciative framework which values information sharing and enables knowledge creation through shared leadership.
Resumo:
The deposition of small metal clusters (Cu, Au and Al) on f.c.c. metals (Cu, Au and Ni) has been studied by molecular dynamics simulation using Finnis–Sinclair (FS) potential. The impact energy varied from 0.01 to 10 eV/atom. First, the deposition of single cluster was simulated. We observed that, even at much lower energy, a small cluster with (Ih) icosahedral symmetry was reconstructed to match the substrate structure (f.c.c.) after deposition. Next, clusters were modeled to drop, one after the other, on the surface. The nanostructure was found by soft landing of Au clusters on Cu with increasing coverage, where interfacial energy dominates. While at relatively higher deposition energy (a few eV), the ordered f.c.c.-like structure was observed in the first adlayer of the film formed by Al clusters depositing on Ni substrate. This characteristic is mainly attributive to the ballistic collision. Our results indicate that the surface morphology synthesized by cluster deposition could be controlled by experimental parameters, which will be helpful for controlled design of nanostructure.
Resumo:
This thesis investigated the viability of using Frequency Response Functions in combination with Artificial Neural Network technique in damage assessment of building structures. The proposed approach can help overcome some of limitations associated with previously developed vibration based methods and assist in delivering more accurate and robust damage identification results. Excellent results are obtained for damage identification of the case studies proving that the proposed approach has been developed successfully.
Resumo:
Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A refined plastic hinge method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in a companion paper. The method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established in this paper by comparison with a comprehensive range of analytical benchmark frame solutions. The refined plastic hinge method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.