984 resultados para Meta-heuristics algorithms
Resumo:
The (n, k)-arrangement interconnection topology was first introduced in 1992. The (n, k )-arrangement graph is a class of generalized star graphs. Compared with the well known n-star, the (n, k )-arrangement graph is more flexible in degree and diameter. However, there are few algorithms designed for the (n, k)-arrangement graph up to present. In this thesis, we will focus on finding graph theoretical properties of the (n, k)- arrangement graph and developing parallel algorithms that run on this network. The topological properties of the arrangement graph are first studied. They include the cyclic properties. We then study the problems of communication: broadcasting and routing. Embedding problems are also studied later on. These are very useful to develop efficient algorithms on this network. We then study the (n, k )-arrangement network from the algorithmic point of view. Specifically, we will investigate both fundamental and application algorithms such as prefix sums computation, sorting, merging and basic geometry computation: finding convex hull on the (n, k )-arrangement graph. A literature review of the state-of-the-art in relation to the (n, k)-arrangement network is also provided, as well as some open problems in this area.
Resumo:
The hyper-star interconnection network was proposed in 2002 to overcome the drawbacks of the hypercube and its variations concerning the network cost, which is defined by the product of the degree and the diameter. Some properties of the graph such as connectivity, symmetry properties, embedding properties have been studied by other researchers, routing and broadcasting algorithms have also been designed. This thesis studies the hyper-star graph from both the topological and algorithmic point of view. For the topological properties, we try to establish relationships between hyper-star graphs with other known graphs. We also give a formal equation for the surface area of the graph. Another topological property we are interested in is the Hamiltonicity problem of this graph. For the algorithms, we design an all-port broadcasting algorithm and a single-port neighbourhood broadcasting algorithm for the regular form of the hyper-star graphs. These algorithms are both optimal time-wise. Furthermore, we prove that the folded hyper-star, a variation of the hyper-star, to be maixmally fault-tolerant.
Resumo:
Hub location problem is an NP-hard problem that frequently arises in the design of transportation and distribution systems, postal delivery networks, and airline passenger flow. This work focuses on the Single Allocation Hub Location Problem (SAHLP). Genetic Algorithms (GAs) for the capacitated and uncapacitated variants of the SAHLP based on new chromosome representations and crossover operators are explored. The GAs is tested on two well-known sets of real-world problems with up to 200 nodes. The obtained results are very promising. For most of the test problems the GA obtains improved or best-known solutions and the computational time remains low. The proposed GAs can easily be extended to other variants of location problems arising in network design planning in transportation systems.
Resumo:
The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.
Resumo:
Hub Location Problems play vital economic roles in transportation and telecommunication networks where goods or people must be efficiently transferred from an origin to a destination point whilst direct origin-destination links are impractical. This work investigates the single allocation hub location problem, and proposes a genetic algorithm (GA) approach for it. The effectiveness of using a single-objective criterion measure for the problem is first explored. Next, a multi-objective GA employing various fitness evaluation strategies such as Pareto ranking, sum of ranks, and weighted sum strategies is presented. The effectiveness of the multi-objective GA is shown by comparison with an Integer Programming strategy, the only other multi-objective approach found in the literature for this problem. Lastly, two new crossover operators are proposed and an empirical study is done using small to large problem instances of the Civil Aeronautics Board (CAB) and Australian Post (AP) data sets.
Resumo:
The KCube interconnection topology was rst introduced in 2010. The KCube graph is a compound graph of a Kautz digraph and hypercubes. Compared with the at- tractive Kautz digraph and well known hypercube graph, the KCube graph could accommodate as many nodes as possible for a given indegree (and outdegree) and the diameter of interconnection networks. However, there are few algorithms designed for the KCube graph. In this thesis, we will concentrate on nding graph theoretical properties of the KCube graph and designing parallel algorithms that run on this network. We will explore several topological properties, such as bipartiteness, Hamiltonianicity, and symmetry property. These properties for the KCube graph are very useful to develop efficient algorithms on this network. We will then study the KCube network from the algorithmic point of view, and will give an improved routing algorithm. In addition, we will present two optimal broadcasting algorithms. They are fundamental algorithms to many applications. A literature review of the state of the art network designs in relation to the KCube network as well as some open problems in this field will also be given.
Resumo:
A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.
Characterizing Dynamic Optimization Benchmarks for the Comparison of Multi-Modal Tracking Algorithms
Resumo:
Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.
Resumo:
The KCube interconnection network was first introduced in 2010 in order to exploit the good characteristics of two well-known interconnection networks, the hypercube and the Kautz graph. KCube links up multiple processors in a communication network with high density for a fixed degree. Since the KCube network is newly proposed, much study is required to demonstrate its potential properties and algorithms that can be designed to solve parallel computation problems. In this thesis we introduce a new methodology to construct the KCube graph. Also, with regard to this new approach, we will prove its Hamiltonicity in the general KC(m; k). Moreover, we will find its connectivity followed by an optimal broadcasting scheme in which a source node containing a message is to communicate it with all other processors. In addition to KCube networks, we have studied a version of the routing problem in the traditional hypercube, investigating this problem: whether there exists a shortest path in a Qn between two nodes 0n and 1n, when the network is experiencing failed components. We first conditionally discuss this problem when there is a constraint on the number of faulty nodes, and subsequently introduce an algorithm to tackle the problem without restrictions on the number of nodes.
Resumo:
Many real-world optimization problems contain multiple (often conflicting) goals to be optimized concurrently, commonly referred to as multi-objective problems (MOPs). Over the past few decades, a plethora of multi-objective algorithms have been proposed, often tested on MOPs possessing two or three objectives. Unfortunately, when tasked with solving MOPs with four or more objectives, referred to as many-objective problems (MaOPs), a large majority of optimizers experience significant performance degradation. The downfall of these optimizers is that simultaneously maintaining a well-spread set of solutions along with appropriate selection pressure to converge becomes difficult as the number of objectives increase. This difficulty is further compounded for large-scale MaOPs, i.e., MaOPs possessing large amounts of decision variables. In this thesis, we explore the challenges of many-objective optimization and propose three new promising algorithms designed to efficiently solve MaOPs. Experimental results demonstrate the proposed optimizers to perform very well, often outperforming state-of-the-art many-objective algorithms.
Resumo:
Tesis (Maestría en Ciencias de la Administración con Especialidad en Investigación de Operaciones) U.A.N.L.
Resumo:
Tesis (Maestría en Ciencias de la Administración con Especialidad en Relaciones Industriales) U.A.N.L.
Resumo:
Tesis (Doctor en Ingeniería con Especialidad en Ingeniería de Sistemas) UANL, 2012.
Resumo:
Le projet de recherche porte sur l'étude des problèmes de conception et de planification d'un réseau optique de longue distance, aussi appelé réseau de coeur (OWAN-Optical Wide Area Network en anglais). Il s'agit d'un réseau qui transporte des flots agrégés en mode commutation de circuits. Un réseau OWAN relie différents sites à l'aide de fibres optiques connectées par des commutateurs/routeurs optiques et/ou électriques. Un réseau OWAN est maillé à l'échelle d'un pays ou d’un continent et permet le transit des données à très haut débit. Dans une première partie du projet de thèse, nous nous intéressons au problème de conception de réseaux optiques agiles. Le problème d'agilité est motivé par la croissance de la demande en bande passante et par la nature dynamique du trafic. Les équipements déployés par les opérateurs de réseaux doivent disposer d'outils de configuration plus performants et plus flexibles pour gérer au mieux la complexité des connexions entre les clients et tenir compte de la nature évolutive du trafic. Souvent, le problème de conception d'un réseau consiste à prévoir la bande passante nécessaire pour écouler un trafic donné. Ici, nous cherchons en plus à choisir la meilleure configuration nodale ayant un niveau d'agilité capable de garantir une affectation optimale des ressources du réseau. Nous étudierons également deux autres types de problèmes auxquels un opérateur de réseau est confronté. Le premier problème est l'affectation de ressources du réseau. Une fois que l'architecture du réseau en termes d'équipements est choisie, la question qui reste est de savoir : comment dimensionner et optimiser cette architecture pour qu'elle rencontre le meilleur niveau possible d'agilité pour satisfaire toute la demande. La définition de la topologie de routage est un problème d'optimisation complexe. Elle consiste à définir un ensemble de chemins optiques logiques, choisir les routes physiques suivies par ces derniers, ainsi que les longueurs d'onde qu'ils utilisent, de manière à optimiser la qualité de la solution obtenue par rapport à un ensemble de métriques pour mesurer la performance du réseau. De plus, nous devons définir la meilleure stratégie de dimensionnement du réseau de façon à ce qu'elle soit adaptée à la nature dynamique du trafic. Le second problème est celui d'optimiser les coûts d'investissement en capital(CAPEX) et d'opération (OPEX) de l'architecture de transport proposée. Dans le cas du type d'architecture de dimensionnement considérée dans cette thèse, le CAPEX inclut les coûts de routage, d'installation et de mise en service de tous les équipements de type réseau installés aux extrémités des connexions et dans les noeuds intermédiaires. Les coûts d'opération OPEX correspondent à tous les frais liés à l'exploitation du réseau de transport. Étant donné la nature symétrique et le nombre exponentiel de variables dans la plupart des formulations mathématiques développées pour ces types de problèmes, nous avons particulièrement exploré des approches de résolution de type génération de colonnes et algorithme glouton qui s'adaptent bien à la résolution des grands problèmes d'optimisation. Une étude comparative de plusieurs stratégies d'allocation de ressources et d'algorithmes de résolution, sur différents jeux de données et de réseaux de transport de type OWAN démontre que le meilleur coût réseau est obtenu dans deux cas : une stratégie de dimensionnement anticipative combinée avec une méthode de résolution de type génération de colonnes dans les cas où nous autorisons/interdisons le dérangement des connexions déjà établies. Aussi, une bonne répartition de l'utilisation des ressources du réseau est observée avec les scénarios utilisant une stratégie de dimensionnement myope combinée à une approche d'allocation de ressources avec une résolution utilisant les techniques de génération de colonnes. Les résultats obtenus à l'issue de ces travaux ont également démontré que des gains considérables sont possibles pour les coûts d'investissement en capital et d'opération. En effet, une répartition intelligente et hétérogène de ressources d’un réseau sur l'ensemble des noeuds permet de réaliser une réduction substantielle des coûts du réseau par rapport à une solution d'allocation de ressources classique qui adopte une architecture homogène utilisant la même configuration nodale dans tous les noeuds. En effet, nous avons démontré qu'il est possible de réduire le nombre de commutateurs photoniques tout en satisfaisant la demande de trafic et en gardant le coût global d'allocation de ressources de réseau inchangé par rapport à l'architecture classique. Cela implique une réduction substantielle des coûts CAPEX et OPEX. Dans nos expériences de calcul, les résultats démontrent que la réduction de coûts peut atteindre jusqu'à 65% dans certaines jeux de données et de réseau.