987 resultados para Mediated Ring-expansion
Resumo:
Nanoparticles are highly used in biological applications including nanomedicine. In this present study, the interaction of HepG2 hepatocellular carcinoma cells (HCC) with hydroxyapatite (HAp), zinc-doped hydroxyapatite, and titanium dioxide (TiO2) nanoparticles were investigated. Hydroxyapatite, zinc-doped hydroxyapatite and titanium dioxide nanoparticles were prepared by wet precipitation method. They were subjected to isochronal annealing at different temperatures. Particle morphology and size distribution were characterized by X-ray diffraction and transmission electron microscope. The nanoparticles were co-cultured with HepG2 cells. MTT assay was employed to evaluate the proliferation of tumor cells. The DNA damaging effect of HAp, Zn-doped HAp, and TiO2 nanoparticles in human hepatoma cells (HepG2) were evaluated using DNA fragmentation studies. The results showed that in HepG2 cells, the anti-tumor activity strongly depend on the size of nanoparticles in HCC cells. Cell cycle arrest analysis for HAp, zinc-doped HAp, and TiO2 nanoparticles revealed the influence of HAp, zinc-doped HAp, and titanium dioxide nanoparticles on the apoptosis of HepG2 cells. The results imply that the novel nano nature effect plays an important role in the biomedicinal application of nanoparticles.
Resumo:
Laminar forced convection heat transfer from two-dimensional sudden expansion flow of different nanofluids is studied numerically. The governing equations are solved using the unsteady stream function-vorticity method. The effect of volume fraction of the nanoparticles and type of nanoparticles on heat transfer is examined and found to have a significant impact. Local and average Nusselt numbers are reported in connection with various nanoparticle, volume fraction, and Reynolds number for expansion ratio 2. The Nusselt number reaches peak values near the reattachment point and reaches asymptotic value in the downstream. Bottom wall eddy and volume fraction shows a significant impact on the average Nusselt number.
Resumo:
The solution of a bivariate population balance equation (PBE) for aggregation of particles necessitates a large 2-d domain to be covered. A correspondingly large number of discretized equations for particle populations on pivots (representative sizes for bins) are solved, although at the end only a relatively small number of pivots are found to participate in the evolution process. In the present work, we initiate solution of the governing PBE on a small set of pivots that can represent the initial size distribution. New pivots are added to expand the computational domain in directions in which the evolving size distribution advances. A self-sufficient set of rules is developed to automate the addition of pivots, taken from an underlying X-grid formed by intersection of the lines of constant composition and constant particle mass. In order to test the robustness of the rule-set, simulations carried out with pivotwise expansion of X-grid are compared with those obtained using sufficiently large fixed X-grids for a number of composition independent and composition dependent aggregation kernels and initial conditions. The two techniques lead to identical predictions, with the former requiring only a fraction of the computational effort. The rule-set automatically reduces aggregation of particles of same composition to a 1-d problem. A midway change in the direction of expansion of domain, effected by the addition of particles of different mean composition, is captured correctly by the rule-set. The evolving shape of a computational domain carries with it the signature of the aggregation process, which can be insightful in complex and time dependent aggregation conditions. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: In higher primates, during non-pregnant cycles, it is indisputable that circulating LH is essential for maintenance of corpus luteum (CL) function. On the other hand, during pregnancy, CL function gets rescued by the LH analogue, chorionic gonadotropin (CG). The molecular mechanisms involved in the control of luteal function during spontaneous luteolysis and rescue processes are not completely understood. Emerging evidence suggests that LH/CGR activation triggers proliferation and transformation of target cells by various signaling molecules as evident from studies demonstrating participation of Src family of tyrosine kinases (SFKs) and MAP kinases in hCG-mediated actions in Leydig cells. Since circulating LH concentration does not vary during luteal regression, it was hypothesized that decreased responsiveness of luteal cells to LH might occur due to changes in LH/CGR expression dynamics, modulation of SFKs or interference with steroid biosynthesis. Methods: Since, maintenance of structure and function of CL is dependent on the presence of functional LH/CGR its expression dynamics as well as mRNA and protein expressions of SFKs were determined throughout the luteal phase. Employing well characterized luteolysis and CL rescue animal models, activities of SFKs, cAMP phosphodiesterase (cAMP-PDE) and expression of SR-B1 (a membrane receptor associated with trafficking of cholesterol ester) were examined. Also, studies were carried out to investigate the mechanisms responsible for decline in progesterone biosynthesis in CL during the latter part of the non-pregnant cycle. Results and discussion: The decreased responsiveness of CL to LH during late luteal phase could not be accounted for by changes in LH/CGR mRNA levels, its transcript variants or protein. Results obtained employing model systems depicting different functional states of CL revealed increased activity of SFKs pSrc (Y-416)] and PDE as well as decreased expression of SR-B1correlating with initiation of spontaneous luteolysis. However, CG, by virtue of its heroic efforts, perhaps by inhibition of SFKs and PDE activation, prevents CL from undergoing regression during pregnancy. Conclusions: The results indicated participation of activated Src and increased activity of cAMP-PDE in the control of luteal function in vivo. That the exogenous hCG treatment caused decreased activation of Src and cAMP-PDE activity with increased circulating progesterone might explain the transient CL rescue that occurs during early pregnancy.
Resumo:
Pathogenic rnycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase C delta (PKC delta), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-kappa B and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-alpha). Enhanced activation of PKA signaling resulted in the generation of PKA C-alpha; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.
Resumo:
An excellent utility of Schmidt reaction of aldehydes to access corresponding nitriles in an instantaneous reaction is demonstrated. The reaction of aldehydes with NaN3 and TfOH furnishes the corresponding nitriles in near quantitative yields and tolerates a variety of electron-withdrawing and electron-donating substituents on the substrates. Formanilides, a common side product in Schmidt reaction, is not observed in this reaction. Besides these advantages, the salient feature of this reaction is that it exhibits a remarkable chemoselectivity, as acid and ketone functionalities are well tolerated under the reaction conditions. The reaction is easily scalable, high yielding, and nearly instantaneous.
Resumo:
Reaction of 3-acetyl and 3-bromoacetyl coumarins with hydrazine hydrate has resulted in the ring opening of the coumarin moiety. The reaction was attempted with a view to obtain some new pyridazinones and pyrazolones. The reaction did not proceed via the expected pathway instead led to the formation of salicyl azines, the structure of which has been confirmed by single crystal X-ray studies.
Resumo:
In this paper, the synthesis, characterization and glutathione peroxidase and peroxynitrite scavenging activities of a series of stable spirodiazaselenuranes are described. The spiro compounds were synthesized in good yields by oxidative cyclization of diaryl selenides bearing amide moieties. All the selenides and spiro derivatives were characterized by H-1, C-13 and Se-77 NMR spectroscopy, mass spectral techniques and the structures of some of the spirodiazaselenuranes were confirmed by single crystal X-ray crystallography. The structures reveal that the selenium atom occupies the center of a distorted trigonal bipyramid core with two nitrogen atoms occupying the apical positions and two carbon atoms and the selenium lone pair occupying the equatorial positions. Mechanistic investigations indicate that the spirocyclization occurs via the formation of selenoxide intermediates. The new compounds were evaluated for their glutathione peroxidase (GPx) mimetic activity by using H2O2 as a substrate and glutathione (GSH) as a co-substrate. It was found that the substituents attached to the nitrogen atom of the selenazole ring have a significant effect on the GPx activity. While the introduction of electron withdrawing groups such as -Cl, -Br etc. to the phenyl ring decreases the activity, the introduction of electron donating groups such as -OH, -OMe significantly enhances the GPx activity of both diaryl selenides and spirodiazaselenuranes. In addition to GPx activity, the selenides and spiro derivatives were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. These studies indicate that the diarylselenides effectively inhibit the PN-mediated nitration and oxidation reactions by reacting with PN to produce the corresponding spirodiazaselenuranes.
Resumo:
We present a detailed study of a 3+2+1] cascade cyclisation of vinylcyclopropanes (VCP) catalysed by a bromenium species (Brd+?Xd-) generated in situ, which results in the synthesis of chiral bicyclic amidines in a tandem one-pot operation. The formation of amidines involves the ring-opening of VCPs with Br?X, followed by a Ritter-type reaction with chloramine-T and a tandem cyclisation. The reaction has been further extended to vinylcyclobutane systems and involves a 4+2+1] cascade cyclisation with the same reagents. The versatility of the methodology has been demonstrated by careful choice of VCPs and VCBs to yield bicyclo4.3.0]-, -4.3.1]- and -4.4.0]amidines in enantiomerically pure form. On the basis of the experimental observations and DFT calculations, a reasonable mechanism has been put forth to account for the formation of the products and the observed stereoselectivity. We propose the existence of a p-stabilised homoallylic carbocation at the cyclopropane carbon as the reason for high stereoselectivity. DFT studies at B3LYP/6-311+G** and M06-2X/6-31+G* levels of theory in gas-phase calculations suggest the ring-opening of VCP is initiated at the p-complex stage (between the double bond and Br?X). This can be clearly perceived from the solution-phase (acetonitrile) calculations using the polarisable continuum model (PCM) solvation model, from which the extent of the ring opening of VCP was found to be noticeably high. Studies also show that the formation of zero-bridge bicyclic amidines is favoured over other bridged bicyclic amidines. The energetics of competing reaction pathways is compared to explain the product selectivity.
Resumo:
We have developed a technique to measure the absolute frequencies of optical transitions by using an evacuated Rb-stabilized ring-cavity resonator as a transfer cavity. The absolute frequency of the Rb D-2 line (at 780 nm) used to stabilize the cavity is known and allows us to determine the absolute value of the unknown frequency. We study wavelength-dependent errors due to dispersion at the cavity mirrors by measuring the frequency of the same transition in the Cs D-2 line (at 852 nm) at three cavity lengths. The spread in the values shows that dispersion errors are below 30 kHz, corresponding to a relative precision of 10(-10). We give an explanation for reduced dispersion errors in the ring-cavity geometry by calculating errors due to the lateral shift and the phase shift at the mirrors, and show that they are roughly equal but occur with opposite signs. We have earlier shown that diffraction errors (due to Guoy phase) are negligible in the ring-cavity geometry compared to a linear cavity; the reduced dispersion error is another advantage. Our values are consistent with measurements of the same transition using the more expensive frequency-comb technique. Our simpler method is ideally suited for measuring hyperfine structure, fine structure, and isotope shifts, up to several hundreds of gigahertz.
Resumo:
This paper presents an experimental investigations performed on various electronic components used in telecommunication networks and those used in avionics for the ring wave surge voltages. IEEE Std C 62.41.1-2002 specifies a stringent requirement of waveforms to be applied for the evaluation of telecom components. To meet the necessary requirements in the absence of commercial equipment for generating the required waveforms, special efforts were made to fabricate a ring wave surge generator as per prescribed standards. The developed surge generator is capable of delivering an output of 0.5 mu s-100kHz which meets the requirements of telecom standards prescribed for evaluation of various modules used in low voltage ac power circuits used in communication networks. The results of the experimental investigations obtained on various modules used in communication networks are presented.
Resumo:
Ligand-induced stabilization of the G-quadruplex DNA structure derived from the single-stranded 3'-overhang of the telomeric DNA is an attractive strategy for the inhibition of the telomerase activity. The agents that can induce/stabilize a DNA sequence into a G-quadruplex structure are therefore potential anticancer drugs. Herein we present the first report of the interactions of two novel bisbenzimidazoles (TBBz1 and TBBz2) based on Troger's base skeleton with the G-quadruplex DNA (G4DNA). These Troger's base molecules stabilize the G4DNA derived from a human telomeric sequence. Evidence of their strong interaction with the G4DNA has been obtained from CD spectroscopy, thermal denaturation, and UV-vis titration studies. These ligands also possess significantly higher affinity toward the G4DNA over the duplex DNA. The above results obtained are in excellent agreement with the biological activity, measured in vitro using a modified TRAP assay. Furthermore, the ligands are selectively more cytotoxic toward the cancerous cells than the corresponding noncancerous cells. Computational studies suggested that the adaptive scaffold might allow these ligands to occupy not only the G-quartet planes but also the grooves of the G4DNA.
Resumo:
In this article we present dual-component charge-transfer interaction (CT) induced organogel formation with bile acid anthracene conjugates as donors and 2,4,7-trinitrofluorenone (TNF) as the acceptor. The use of TNF (1) as a versatile electron acceptor in the formation of gels is demonstrated through the formation of gels with different steroidal groups on the anthracene moiety in a variety of solvents ranging from aromatic hydrocarbons to long chain alcohols. Thermal stability and variable temperature fluorescence experiments were performed on these CT gels. Dynamic rheological experiments conducted on these gels suggest that these are viscoelastic soft materials and with the gel strength can be modulated by varying the donor/acceptor ratios.
Resumo:
Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1) from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in V-max of the enzyme activity by these phospholipids significantly decreased the K-m indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K-1/2 = 114 nM) compared to PA (K-1/2 = 335 nM). We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.
Resumo:
We examine the large-order behavior of a recently proposed renormalization-group-improved expansion of the Adler function in perturbative QCD, which sums in an analytically closed form the leading logarithms accessible from renormalization-group invariance. The expansion is first written as an effective series in powers of the one-loop coupling, and its leading singularities in the Borel plane are shown to be identical to those of the standard ``contour-improved'' expansion. Applying the technique of conformal mappings for the analytic continuation in the Borel plane, we define a class of improved expansions, which implement both the renormalization-group invariance and the knowledge about the large-order behavior of the series. Detailed numerical studies of specific models for the Adler function indicate that the new expansions have remarkable convergence properties up to high orders. Using these expansions for the determination of the strong coupling from the hadronic width of the tau lepton we obtain, with a conservative estimate of the uncertainty due to the nonperturbative corrections, alpha(s)(M-tau(2)) = 0.3189(-0.0151)(+0.0173), which translates to alpha(s)(M-Z(2)) = 0.1184(-0.0018)(+0.0021). DOI: 10.1103/PhysRevD.87.014008