924 resultados para Mechanistic
Resumo:
We analyzed with this work the importance of using experiments in the classroom, especially the low-cost experiments for better learning of Physics, discussing the context where this discipline is inserted, which in general, has been presented to students in a traditional, mechanistic way. We worked with the electrostatic theme and low cost didactic experiments, focusing on the pizza electrophorus. About the handling of this experiment, we can see the surprise and curiosity in students, depending on how it is used in didactic activities in order to make it meaningful to the student. We discussed how the curiosity can be harnessed in the classroom, the types of curiosity according to Freire, how to overcome the curiosity to become epistemological, the physics involved in the experiment and the teacher's role in this context
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The acceleration of economic and scientific development caused by the production system and mechanistic science, have created new power structures and new political and social problems, including environmental ones, consolidating a period of widespread crisis in different spheres of society. In this context, reflection about the major causes of environmental problems is necessary in the field of environmental education. Therefore, considering that the current environmental crisis is directly related to the mode and the devices of production of the capitalist system, initiatives on environmental education should reflect, from a historical and dialectical process, on what is advocated by capitalist society. Considering the various theoretical-practical concepts and approaches in environmental education, the principles of Critical Environmental Education can provide conditions to confront the structural crisis that we are facing, through the educational process. It is a political process of reflection and critical appropriation of knowledge, attitudes, values and behaviors that aims to contribute to build a sustainable society from the social and environmental points of view. We intend to articulate it through the theoretical formulations of Historical-Critical Pedagogy with the purpose of presenting a reflection that may contribute to a pedagogic response to environmental issues, especially regarding the formation of teachers who develop projects in schools. Thus, this present study intends to highlight the contributions of the philosophy of praxis in the formation of environmental educators, grounded in theoretical aspects of Critical Environmental Education.
Resumo:
We analyzed the National Curriculum for Secondary Schools with respect to the ontological, epistemological, historical, social and conceptual biology. This study aims to bring information and thinking about the inclusion of history and philosophy of biology for secondary education and for teacher training. We performed an analysis of PCNEM, PCNEM+ and Curriculum Guidelines as a whole from established categories. The results indicate a predominance of the ontological view of mechanistic biology. Epistemologically, although acknowledged, the question of scientific method is rarely discussed. The historical approach and social scientific activity and scientific knowledge are recognized by the documents, but an instrumental view prevails. The conceptual aspects are comprehensive and take into account the theories of structural biology. A philosophical discussion on the biology is missing in the parameters, indicating the need for the inclusion of issues related to ideas of determinism, chance and teleology.
Resumo:
Pain is one of the most common reasons for patients to seek medical care. Bee Apis mellifera venom (AMV) has traditionally been used to treat inflammatory diseases and the alleviation of pain. Herein, we aimed to investigate the visceral antinociceptive potential of A. mellifera bee venom and its possible mechanism of action. Acetic acid-induced writhing assay was used in mice to determine the degree of visceral antinociception. Visceral antinociceptive activity was expressed as the reduction in the number of abdominal constrictions. Mice received an intraperitoneal injection of acetic acid after administration of AMV (0.08 or 0.8 mg/kg; intraperitoneally (i.p.)). In mechanistic studies, separate experiments were realized to examine the role of α2-receptors, nitric oxide, calcium channels, K+ATP channel activation, TRPV1 and opioid receptors on the visceral antinociceptive effect of AMV (0.8 mg/kg), using appropriate antagonists, yohimbine (2 mg/kg), L-NG-Nitroarginine methyl ester (L-NAME, 10 mg/kg), verapamil (5 mg/kg), glibenclamide (5 mg/kg), ruthenium red (3 mg/kg) or naloxone (2 mg/kg). AMV presented visceral antinociceptive activity in both doses tested (0.08 and 0.8 mg/Kg). Visceral antinociceptive effect of AMV was resistant to all the antagonists used. Mice showed no significant alterations in locomotion frequency, indicating that the observed antinociception is not a consequence of motor abnormality. Although AMV efficient diminished the acetic acid-evoked pain-related behavior, its mechanism is unclear from this study and future studies are needed to verify how the venom exerts its antinociceptive action.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The present status and future progress of the mechanisms of persistent luminescence are critically treated with the present knowledge. The advantages to be achieved by a further need as well as the pitfalls of the excessive use of imagination are shown. As usual, in the beginning of the present era of persistent luminescence since the mid 1990s, the imagination played a more important role than the sparse solid experimental data and the chemical common sense and knowledge was largely ignored. Since some five years, the mechanistic studies seem to have reached the maturity and - perhaps deceivingly - it seems that there are only details to be solved. However, the development of red emitting nanocrystalline materials poses a challenge also to the more fundamental studies and interpretation. The questions still luring in the darkness include the problems how the increased surface area affects the defect structure and how the "persistent energy transfer" really works. There is still some light to be thrown onto these matters starting with agreeing on the terminology: the term phosphorescence should be abandoned altogether. The long lifetime of persistent luminescence is due to trapping of excitation energy, not to the forbidden nature of the luminescent transition. However, the technically well-suited term "afterglow" should be retained for harmful, short persistent luminescence. (C) 2012 Optical Society of America
Resumo:
Almost fifty years after the discovery of the peroxyoxalate reaction by E. A. Chandross in the early nineteen sixties, this review article intends to give a general overview on mechanistic aspects of this system and to describe the principles of its analytical application. After a short general introduction on the principles of chemiluminescence and the history of peroxyoxalate discovery, mechanistic aspects of high-energy intermediate formation, its structure and its reaction with an activator in the peroxyoxalate system are discussed. Finally, analytical applications of peroxyoxalate chemiluminescence are exemplified using representative recent examples, including oxalic acid detection in biological samples.
Resumo:
In this study we address the problem of the response of a (electro)chemical oscillator towards chemical perturbations of different magnitudes. The chemical perturbation was achieved by addition of distinct amounts of trifluoromethanesulfonate (TFMSA), a rather stable and non-specifically adsorbing anion, and the system under investigation was the methanol electro-oxidation reaction under both stationary and oscillatory regimes. Increasing the anion concentration resulted in a decrease in the reaction rates of methanol oxidation and a general decrease in the parameter window where oscillations occurred. Furthermore, the addition of TFMSA was found to decrease the induction period and the total duration of oscillations. The mechanism underlying these observations was derived mathematically and revealed that inhibition in the methanol oxidation through blockage of active sites was found to further accelerate the intrinsic non-stationarity of the unperturbed system. Altogether, the presented results are among the few concerning the experimental assessment of the sensitiveness of an oscillator towards chemical perturbations. The universal nature of the complex chemical oscillator investigated here might be used for reference when studying the dynamics of other less accessible perturbed networks of (bio)chemical reactions.
Resumo:
Talisin is a seed-storage protein from Talisia esculenta that presents lectin-like activities, as well as proteinase-inhibitor properties. The present study aims to provide new in vitro and in silico biochemical information about this protein, shedding some light on its mechanistic inhibitory strategies. A theoretical three-dimensional structure of Talisin bound to trypsin was constructed in order to determine the relative interaction mode. Since the structure of non-competitive inhibition has not been elucidated, Talisin-trypsin docking was carried out using Hex v5.1, since the structure of non-competitive inhibition has not been elucidated. The predicted non-coincidence of the trypsin binding site is completely different from that previously proposed for Kunitz-type inhibitors, which demonstrate a substitution of an Arg(64) for the Glu(64) residue. Data, therefore, provide more information regarding the mechanisms of non-competitive plant proteinase inhibitors. Bioassays with Talisin also presented a strong insecticide effect on the larval development of Diatraea saccharalis, demonstrating LD50 and ED50 of ca. 2.0% and 1.5%, respectively. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The enzyme purine nucleoside phosphorylase (PNP) is a target for the discovery of new lead compounds employed on the treatment severe T-cell mediated disorders. Within this context, the development of new, direct, and reliable methods for ligands screening is an important task. This paper describes the preparation of fused silica capillaries human PNP (HsPNP) immobilized enzyme reactor (IMER). The activity of the obtained IMER is monitored on line in a multidimensional liquid chromatography system, by the quantification of the product formed throughout the enzymatic reaction. The Km value for the immobilized enzyme was about twofold higher than that measured for the enzyme in solution (255 +/- 29.2 mu M and 133 +/- 114.9 mu M, respectively). A new fourth-generation immucillin derivative (DI4G: IC50 = 40.6 +/- 0.36 nM), previously identified and characterized in HsPNP free enzyme assays, was used to validate the IMER as a screening method for HsPNP ligands. The validated method was also used for mechanistic studies with this inhibitor. This new approach is a valuable tool to PNP ligand screening, since it directly measures the hypoxanthine released by inosine phosphorolysis, thus furnishing more reliable results than those one used in a coupled enzymatic spectrophotometric assay. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objectives: The majority of individuals who survive a stroke are disabled because of persisting neurological impairments. The objective of this study was to evaluate the efficacy of subcutaneous electrical stimulation of the scalp in spontaneous functional recovery of patients with chronic ischemic stroke, by evaluating clinical, neurological, and functional findings. Subjects and methods: Sixty-two (62) subjects who were at least 18 months postdiagnosis of ischemic stroke were randomized to receive 10 sessions of placebo or active low-frequency electrical stimulation (2/100 Hz) using subcutaneous acupuncture needles over the scalp. Functional and neurological evaluations were indexed by the Barthel, Rankin, and National Institutes of Health Stroke Scale (NIHSS). Results: Results show that there was a significant difference in functional improvement between the sham and active group as indexed by NIHSS scale. The active group had a larger functional improvement after 10 sessions of scalp electrical acupuncture. The other two functional scales (Rankin and Barthel) failed to show significant differences between the two treatment groups. Conclusions: These results support further testing of scalp electrical acupuncture for the treatment of stroke as well further mechanistic studies to understand mechanisms associated with the observed improvement. Further studies need to consider longer follow-up assessments to investigate potential functional changes associated with electrical acupuncture.
Resumo:
DEP domain-containing mTOR-interacting protein (DEPTOR) inhibits the mechanistic target of rapamycin (mTOR), but its in vivo functions are unknown. Previous work indicates that Deptor is part of the Fob3a quantitative trait locus (QTL) linked to obesity/leanness in mice, with Deptor expression being elevated in white adipose tissue (WAT) of obese animals. This relation is unexpected, considering the positive role of mTOR in adipogenesis. Here, we dissected the Fob3a QTL and show that Deptor is the highest-priority candidate promoting WAT expansion in this model. Consistently, transgenic mice overexpressing DEPTOR accumulate more WAT. Furthermore, in humans, DEPTOR expression in WAT correlates with the degree of obesity. We show that DEPTOR is induced by glucocorticoids during adipogenesis and that its overexpression promotes, while its suppression blocks, adipogenesis. DEPTOR activates the proadipogenic Akt/PKB-PPAR-gamma axis by dampening mTORC1-mediated feedback inhibition of insulin signaling. These results establish DEPTOR as a new regulator of adipogenesis.
Order-Disorder Transitions Govern Kinetic Cooperativity and Allostery of Monomeric Human Glucokinase
Resumo:
Glucokinase (GCK) catalyzes the rate-limiting step of glucose catabolism in the pancreas, where it functions as the body's principal glucose sensor. GCK dysfunction leads to several potentially fatal diseases including maturity-onset diabetes of the young type II (MODY-II) and persistent hypoglycemic hyperinsulinemia of infancy (PHHI). GCK maintains glucose homeostasis by displaying a sigmoidal kinetic response to increasing blood glucose levels. This positive cooperativity is unique because the enzyme functions exclusively as a monomer and possesses only a single glucose binding site. Despite nearly a half century of research, the mechanistic basis for GCK's homotropic allostery remains unresolved. Here we explain GCK cooperativity in terms of large-scale, glucose-mediated disorder-order transitions using 17 isotopically labeled isoleucine methyl groups and three tryptophan side chains as sensitive nuclear magnetic resonance (NMR) probes. We find that the small domain of unliganded GCK is intrinsically disordered and samples a broad conformational ensemble. We also demonstrate that small-molecule diabetes therapeutic agents and hyperinsulinemia-associated GCK mutations share a strikingly similar activation mechanism, characterized by a population shift toward a more narrow, well-ordered ensemble resembling the glucose-bound conformation. Our results support a model in which GCK generates its cooperative kinetic response at low glucose concentrations by using a millisecond disorder-order cycle of the small domain as a "time-delay loop," which is bypassed at high glucose concentrations, providing a unique mechanism to allosterically regulate the activity of human GCK under physiological conditions.
Resumo:
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.