1000 resultados para Mathematics morphology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of a constant uniform magnetic field on thermoelectric currents during dendritic solidification were investigated using an enthalpy based numerical model. It was found that the resulting Lorentz force generates a complex flow influencing the solidification pattern. Experimental work of material processing under high magnetic field conditions has shown that the microstructure can be significantly altered. There is evidence that these effects can be atrtributed to the Lorentz force created through the thermoelectric magentohydrodynamic interactions.[1,2] However the mechanism of how this occurs is not very well understood. In this paper, our aim is to investigate the flow field created from the Lorentz force and how this influences the morphology of dendritic growth for both pure materials and binary alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper looks at the application of some of the assessment methods in practice with the view to enhance students’ learning in mathematics and statistics. It explores the effective application of assessment methods and highlights the issues or problems, and ways of avoiding them, related to some of the common methods of assessing mathematical and statistical learning. Some observations made by the author on good assessment practice and useful approaches employed at his institution in designing and applying assessment methods are discussed. Successful strategies in implementing assessment methods at different levels are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of a constant uniform magnetic field on dendritic solidification were investigated using an enthalpy based numerical model. The interaction between thermoelectric currents on a growing crystal and the magnetic field generates a Lorentz force that creates flow. The need for very high resolution at the liquid-solid boundary where the thermoelectric source originates plus the need to accommodate multiple grains for a realistic simulation, make this a very demanding computational problem. For practical simulations, a quasi 3-dimensional approximation is proposed which nevertheless retains essential elements of transport in the third dimension. A magnetic field normal to the plane of growth leads to general flow circulation around an equiaxed dendrite, with secondary recirculations between the arms. The heat/solute advection by the flow is shown to cause a change in the morphology of the dendrite; secondary growth is promoted preferentially on one side of the dendrite arm and the tip velocity of the primary arm is increased. The degree of approximation introduced is quantified by extending the model into 3-dimensions, where the full Navier-Stokes equation is solved, and compared against the 2-dimensional solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of improving the performance and extending the range of applications of mesoporous WO₃films, which were initially developed for the photoelectrochemical oxidation of water, we investigated the effect of a number of dopants (lithium, silicon, ruthenium, molybdenum and tin) upon the transparency, crystallinity, porosity and conductivity of the modified films. Tin, molybdenum and silicon were shown to improve the electrochromic behaviour of the layers whereas ruthenium enhanced considerably the electronic conductivity of the WO₃films. Interestingly, most of the dopants also affected the film morphology and the size of WO₃nanocrystals. X-ray photoelectron spectra revealed absence of significant segregation of doping elements within the film. Raman analyses confirmed that the monoclinic structure of WO₃films does not change upon substitutional cation doping; thus, the crystallinity of WO₃films is maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the possibility of distinguishing between benign and malignant masses by exploiting the morphology-dependent temporal and spectral characteristics of their microwave backscatter response in ultra-wideband breast cancer detection. The spiculated border profiles of 2-D breast masses are generated by modifying the baseline elliptical rings based upon the irregularity of their peripheries. Furthermore, the single- and multilayer lesion models are used to characterize a distinct mass region followed by a sharp transition to background, and a blurred mass border exhibiting a gradual transition to background, respectively. Subsequently, the complex natural resonances (CNRs) of the backscatter microwave signature can be derived from the late-time target response and reveal diagnostically useful information. The fractional sequence CLEAN algorithm is proposed to estimate the lesions' delay intervals and identify the late-time responses. Finally, it is shown through numerical examples that the locations of dominant CNRs are dependent on the lesion morphologies, where 2-D computational breast phantoms with single and multiple lesions are investigated. The analysis is of potential use for discrimination between benign and malignant lesions, where the former usually possesses a better-defined, more compact shape as opposed to the latter.