855 resultados para Magnitudes
Resumo:
Cross sections for charge transfer reactions of organic ions containing oxygen have been obtained using time-of-flight techniques. Charge transfer cross sections have been determined for reactions of 2.0 to 3.4 keV ions produced by electron impact ionization of oxygen containing molecules such as methanol, ethanal and ethanol. Experimental cross section magnitudes have been correlated with reaction energy defects computed from ion recombination energies and target ionization energies. Large cross sections are observed for reacting systems with small energy defects.
Resumo:
We have discovered using Pan-STARRS1 an extremely red late-L dwarf, which has (J - K)(MKO) = 2.78 and (J - K) (2MASS) = 2.84, making it the reddest known field dwarf and second only to 2MASS J1207-39b among substellar companions. Near-IR spectroscopy shows a spectral type of L7 +/- 1 and reveals a triangular H-band continuum and weak alkali (K I and Na I) lines, hallmarks of low surface gravity. Near-IR astrometry from the Hawaii Infrared Parallax Program gives a distance of 24.6 +/- 1.4 pc and indicates a much fainter J-band absolute magnitude than field L dwarfs. The position and kinematics of PSO J318.5-22 point to membership in the beta Pic moving group. Evolutionary models give a temperature of 1160(-40)(+30) K and a mass of 6.5(-1.0)(+1.3) M-Jup, making PSO J318.5-22 one of the lowest mass free-floating objects in the solar neighborhood. This object adds to the growing list of low-gravity field L dwarfs and is the first to be strongly deficient in methane relative to its estimated temperature. Comparing their spectra suggests that young L dwarfs with similar ages and temperatures can have different spectral signatures of youth. For the two objects with well constrained ages (PSO J318.5-22 and 2MASS J0355+11), we find their temperatures are approximate to 400 K cooler than field objects of similar spectral type but their luminosities are similar, i.e., these young L dwarfs are very red and unusually cool but not "underluminous." Altogether, PSO J318.5-22 is the first free-floating object with the colors, magnitudes, spectrum, luminosity, and mass that overlap the young dusty planets around HR 8799 and 2MASS J1207-39
Resumo:
We have measured high-precision infrared parallaxes with the Canada-France-Hawaii Telescope for a large sample of candidate young (approximate to 10-100 Myr) and intermediate-age (approximate to 100-600 Myr) ultracool dwarfs, with spectral types ranging from M8 to T2.5. These objects are compelling benchmarks for substellar evolution and ultracool atmospheres at lower surface gravities (i.e., masses) than most of the field population. We find that the absolute magnitudes of our young sample can be systematically offset from ordinary (older) field dwarfs, with the young late-M objects being brighter and the young/dusty mid-L (L3-L6.5) objects being fainter, especially at J band. Thus, we conclude the "underluminosity" of the young planetary-mass companions HR 8799b and 2MASS J1207-39b compared to field dwarfs is also manifested in young free-floating brown dwarfs, though the effect is not as extreme. At the same time, some young objects over the full spectral type range of our sample are similar to field objects, and thus a simple correspondence between youth and magnitude offset relative to the field population appears to be lacking. Comparing the kinematics of our sample to nearby stellar associations and moving groups, we identify several new moving group members, including the first free-floating L dwarf in the AB Dor moving group, 2MASS J0355+11. Altogether, the effects of surface gravity (age) and dust content on the magnitudes and colors of substellar objects appear to be degenerate. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Region-specific empirically based ground-truth (EBGT) criteria used to estimate the epicentral-location accuracy of seismic events have been developed for the Main Ethiopian Rift and the Tibetan plateau. Explosions recorded during the Ethiopia-Afar Geoscientific Lithospheric Experiment (EAGLE), the International Deep Profiling of Tibet, and the Himalaya (INDEPTH III) experiment provided the necessary GT0 reference events. In each case, the local crustal structure is well known and handpicked arrival times were available, facilitating the establishment of the location accuracy criteria through the stochastic forward modeling of arrival times for epicentral locations. In the vicinity of the Main Ethiopian Rift, a seismic event is required to be recorded on at least 8 stations within the local Pg/Pn crossover distance and to yield a network-quality metric of less than 0.43 in order to be classified as EBGT5(95%) (GT5 with 95% confidence). These criteria were subsequently used to identify 10 new GT5 events with magnitudes greater than 2.1 recorded on the Ethiopian Broadband Seismic Experiment (EBSE) network and 24 events with magnitudes greater than 2.4 recorded on the EAGLE broadband network. The criteria for the Tibetan plateau are similar to the Ethiopia criteria, yet slightly less restrictive as the network-quality metric needs to be less than 0.45. Twenty-seven seismic events with magnitudes greater than 2.5 recorded on the INDEPTH III network were identified as GT5 based on the derived criteria. When considered in conjunction with criteria developed previously for the Kaapvaal craton in southern Africa, it is apparent that increasing restrictions on the network-quality metric mirror increases in the complexity of geologic structure from craton to plateau to rift. Accession Number: WOS:000322569200012
Resumo:
The vibrational excitation of CO2 by a fast-moving O atom followed by infrared emission from the vibrationally excited CO2 has been shown to be an important cooling mechanism in the upper atmospheresof Venus, Earth and Mars. We are trying to determine more precisely the efficiency (rate coefficient) of the CO2-O vibrational energy transfer. For experimental ease the reverse reaction is used, i.e. collision of a vibrationally excited CO2 with atomic O, where we are able to convert to the atmospherically relevant reaction via a known equilibrium constant. The goal of this experiment was to measure the magnitudes of rate coefficients for vibrational energy states above the first excited state, a bending mode in CO2. An isotope of CO2, 13CO2, was used for experimental ease. The rate coefficients for given vibrational energy transfers in 13CO2 are not significantly different from 12CO2 at this level of precision. A slow-flowing gas mixture was flowed through a reaction cell: 13CO2 (vibrational specie of interest), O3(atomic O source), and Ar (bath gas). Transient diode laser absorption spectroscopy was used to monitor thechanging absorption of certain vibrational modes of 13CO2 after a UV pulse from a Nd:YAG laser was fired. Ozone absorbed the UV pulse in a process which vibrationally excited 13CO2 and liberated atomic O.Transient absorption signals were obtained by tuning the diode laser frequency to an appropriate ν3 transition and monitoring the population as a function of time following the Nd:YAG pulse. Transient absorption curves were obtained for various O atom concentrations to determine the rate coefficient of interest. Therotational states of the transitions used for detection were difficult to identify, though their short reequilibration timescale made the identification irrelevant for vibrational energy transfer measurements. The rate coefficient for quenching of the (1000) state was found to be (4 ± 8) x 10-12 cm3 s-1 which is the same order of magnitude as the lowest-energy bend-excited mode: (1.8 ± 0.3) x 10-12 cm3 s-1. More data is necessary before it can be certain that the numerical difference between the two is real.
Resumo:
Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric aerosol optical depth changes. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initial weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields a small additional radiative forcing that amplifies the cooling and perturbs the Earth System on longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different magnitudes of stratospheric aerosol optical depth changes and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the magnitude and temporal evolution of the perturbation, and time scale of interest. On decadal time scales, modeled γ is several times larger for a Pinatubo-like eruption than for the industrial period and for a high emission, 21st century scenario.
Resumo:
Using a cost-efficient climate model, the effect of changes in overturning circulation on neodymium isotopic composition,ϵNd, is systematically examined for the first time. Idealized sequences of abrupt climate changes are induced by the application of periodic freshwater fluxes to the North Atlantic (NA) and the Southern Ocean (SO), thus mainly affecting either the formation of North Atlantic Deep Water (NADW) or Antarctic Bottom Water (AABW). Variations in ϵNd reflect weakening and strengthening of the formation of NADW and AABW, changes in ϵNdof end-members are relatively small. Relationships betweenϵNd and the strength of NADW or AABW are more pronounced for AABW than for NADW. Atlantic patterns of variations in ϵNd systematically differ between NA and SO experiments. Additionally, the signature of changes in ϵNd in the Atlantic and the Pacific is alike in NA but opposite in SO experiments. Discrimination between NA and SO experiments is therefore possible based on the Atlantic pattern of variations in ϵNd and the contrariwise behavior of ϵNd in the Atlantic and the Pacific. In further experiments we examined the effect of variations in magnitudes of particle export fluxes. Within the examined range, and although settling particles represent the only sink of Nd, their effects on ϵNd are relatively small. Our results confirm the large potential of ϵNd as a paleocirculation tracer but also indicate its limitations of quantitative reconstructions of changes in the Atlantic Meridional Ocean Circulation.
Resumo:
Neural dynamic processes correlated over several time scales are found in vivo, in stimulus-evoked as well as spontaneous activity, and are thought to affect the way sensory stimulation is processed. Despite their potential computational consequences, a systematic description of the presence of multiple time scales in single cortical neurons is lacking. In this study, we injected fast spiking and pyramidal (PYR) neurons in vitro with long-lasting episodes of step-like and noisy, in-vivo-like current. Several processes shaped the time course of the instantaneous spike frequency, which could be reduced to a small number (1-4) of phenomenological mechanisms, either reducing (adapting) or increasing (facilitating) the neuron's firing rate over time. The different adaptation/facilitation processes cover a wide range of time scales, ranging from initial adaptation (<10 ms, PYR neurons only), to fast adaptation (<300 ms), early facilitation (0.5-1 s, PYR only), and slow (or late) adaptation (order of seconds). These processes are characterized by broad distributions of their magnitudes and time constants across cells, showing that multiple time scales are at play in cortical neurons, even in response to stationary stimuli and in the presence of input fluctuations. These processes might be part of a cascade of processes responsible for the power-law behavior of adaptation observed in several preparations, and may have far-reaching computational consequences that have been recently described.
Resumo:
The Western Escarpment of the Andes at 18.30°S (Arica area, northern Chile) is a classical example for a transient state in landscape evolution. This part of the Andes is characterized by the presence of >10,000 km2 plains that formed between the Miocene and the present, and >1500 m deeply incised valleys. Although processes in these valleys scale the rates of landscape evolution, determinations of ages of incision, and more importantly, interpretations of possible controls on valley formation have been controversial. This paper uses morphometric data and observations, stratigraphic information, and estimates of sediment yields for the time interval between ca. 7.5 Ma and present to illustrate that the formation of these valleys was driven by two probably unrelated components. The first component is a phase of base-level lowering with magnitudes of∼300–500 m in the Coastal Cordillera. This period of base-level change in the Arica area, that started at ca. 7.5 Ma according to stratigraphic data, caused the trunk streams to dissect headward into the plains. The headward erosion interpretation is based on the presence of well-defined knickzones in stream profiles and the decrease in valley widths from the coast toward these knickzones. The second component is a change in paleoclimate. This interpretation is based on (1) the increase in the size of the largest alluvial boulders (from dm to m scale) with distal sources during the last 7.5 m.y., and (2) the calculated increase in minimum fluvial incision rates of ∼0.2 mm/yr between ca. 7.5 Ma and 3 Ma to ∼0.3 mm/yr subsequently. These trends suggest an increase in effective water discharge for systems sourced in the Western Cordillera (distal source). During the same time, however, valleys with headwaters in the coastal region (local source) lack any evidence of fluvial incision. This implies that the Coastal Cordillera became hyperarid sometime after 7.5 Ma. Furthermore, between 7.5 Ma and present, the sediment yields have been consistently higher in the catchments with distal sources (∼15 m/m.y.) than in the headwaters of rivers with local sources (<7 m/m.y.). The positive correlation between sediment yields and the altitude of the headwaters (distal versus local sources) seems to reflect the effect of orographic precipitation on surface erosion. It appears that base-level change in the coastal region, in combination with an increase in the orographic effect of precipitation, has controlled the topographic evolution of the northern Chilean Andes.
Resumo:
Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.
Resumo:
The intent of the work presented in this thesis is to show that relativistic perturbations should be considered in the same manner as well known perturbations currently taken into account in planet-satellite systems. It is also the aim of this research to show that relativistic perturbations are comparable to standard perturbations in speciffc force magnitude and effects. This work would have been regarded as little more then a curiosity to most engineers until recent advancements in space propulsion methods { e.g. the creation of a artiffcial neutron stars, light sails, and continuous propulsion techniques. These cutting-edge technologies have the potential to thrust the human race into interstellar, and hopefully intergalactic, travel in the not so distant future. The relativistic perturbations were simulated on two orbit cases: (1) a general orbit and (2) a Molniya type orbit. The simulations were completed using Matlab's ODE45 integration scheme. The methods used to organize, execute, and analyze these simulations are explained in detail. The results of the simulations are presented in graphical and statistical form. The simulation data reveals that the speciffc forces that arise from the relativistic perturbations do manifest as variations in the classical orbital elements. It is also apparent from the simulated data that the speciffc forces do exhibit similar magnitudes and effects that materialize from commonly considered perturbations that are used in trajectory design, optimization, and maintenance. Due to the similarities in behavior of relativistic versus non-relativistic perturbations, a case is made for the development of a fully relativistic formulation for the trajectory design and trajectory optimization problems. This new framework would afford the possibility of illuminating new more optimal solutions to the aforementioned problems that do not arise in current formulations. This type of reformulation has already showed promise when the previously unknown Space Superhighways arose as a optimal solution when classical astrodynamics was reformulated using geometric mechanics.
Resumo:
The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.
ALTERNATING CURRENT DIELECTROPHORETIC MANIPULATION OF ERYTHROCYTES IN MEDICAL MICRODEVICE TECHNOLOGY
Resumo:
Medical microdevices have gained popularity in the past few decades because they allow the medical laboratory to be taken out into the field and for disease diagnostics to happen with a smaller sample volume, at a lower cost and much faster. Blood is the human body's most readily available and informative diagnostic fluid because of the wealth of information it provides about the body's general health including enzymatic, proteomic and immunological states. The purpose of this project is to optimize operating conditions and study ABO-Rh erythrocytes dielectrophoretic responses to alternating current electric signals. The end goal of this project is the creation of a relatively inexpensive microfluidic device, which can be used for the ABO-Rh typing of a blood sample. This dissertation presents results showing how blood samples of a known ABO- Rh blood type exhibit differing behavior to the same electrical stimulus based on their blood type. The first panel of donors and experiments, presented in Chapter 4 occurred when a sample of known blood type was injected into a microdevice with a T-shaped electrode configuration and the erythorcytes were found to rupture at a rate specific to their ABO-Rh blood type. The second set of experiments, presented in Chapter 5, were originally published in Electrophoresis in 20111. Novel in this work was the discovery that treatment of human erythrocytes with β-galactosidase successfully removed ABO surface antigens such that native A and B blood no longer agglutinated with the proper antibodies. This work was performed in a medium of conductivity 0.9S/m which is close to the measured conductivity of pooled plasma (~1.1S/m). The ability to perform dielectrophoresis experiments at physiological conductivities conditions is advantageous for future portable devices because the device/instrument would not need to store dilution buffers. The final results of this project, presented in Chapter 6, explore the entire dielectrophoretic spectra of the ABO-Rh erythrocytes including the cross-over frequency and the magnitudes of the positive or negative dielectrophoretic response. These were completed at lower medium conductivities of 0.1S/m and 0.01-0.04S/m. These results show that by using the sweep function built into the Agilent alternating current generator it is possible to explore how a single group of blood cells will react to rapid changes in frequency and will provide the user with curve that can be matched the theoretical dielectrophoretic response curves. As a whole this project shows that it is possible to distinguish human erythrocytes by their ABO-Rh blood type via three different dielectrophoretic methods. This work builds on the foundation of that it is possible to distinguish healthy from infected cells2-7, similar cell types1,7-14 and other work regarding the dielectrophoresis of human erythrocytes1,10,11. This work has implications in both medical diagnostics and future dielectrophoretic work because it has shown that ABO-Rh blood type is now a factor, which must be identified when working with a human blood sample. It also shows that the creation of a microfluidic device that subjects human erythrocytes to a dielectrophoretic impulse and then exports an ABO-Rh blood type is a near future possibility.
Resumo:
A comparison between an unconstrained and a partially constrained system for in vitro biomechanical testing of the L5-S1 spinal unit was conducted. The objective was to compare the compliance and the coupling of the L5-S1 unit measured with an unconstrained and a partially constrained test for the three major physiological motions of the human spine. Very few studies have compared unconstrained and partially constrained testing systems using the same cadaveric functional spinal units (FSUs). Seven human L5-S1 units were therefore tested on both a pneumatic, unconstrained, and a servohydraulic, partially constrained system. Each FSU was tested along three motions: flexion-extension (FE), lateral bending (LB) and axial rotation (AR). The obtained kinematics on both systems is not equivalent, except for the FE case, where both motions are similar. The directions of coupled motions were similar for both tests, but their magnitudes were smaller in the partially constrained configuration. The use of a partially constrained system to characterize LB and AR of the lumbosacral FSU decreased significantly the measured stiffness of the segment. The unconstrained system is today's "gold standard" for the characterization of FSUs. The selected partially constrained method seems also to be an appropriate way to characterize FSUs for specific applications. Care should be taken using the latter method when the coupled motions are important.
Resumo:
Global environmental change not only entails changes in mean environmental conditions but also in their variability. Changes in climate variability are often associated with altered disturbance regimes and temporal patterns of resource availability. Here we show that increased variability of soil nutrients strongly promotes another key process of global change, plant invasion. In experimental plant communities, the success of one of the world's most invasive plants, Japanese knotweed, is two- to four-fold increased if extra nutrients are not supplied uniformly, but in a single large pulse, or in multiple pulses of different magnitudes. The superior ability to take advantage of variable environments may be a key mechanism of knotweed dominance, and possibly many other plant invaders. Our study demonstrates that increased nutrient variability can promote plant invasion, and that changes in environmental variability may interact with other global change processes and thereby substantially accelerate ecological change