979 resultados para MIGRATION-INHIBITORY FACTOR
Resumo:
Objective:To determine the risk factors for the presence of moderate/severe vertebral fracture, specifically 25-hydroxyvitamin D (25-OHD). Study design: Cross-sectional study conducted for 2 years in the city of Sao Paulo, Brazil including community-dwelling elderly women. Methods: Bone mineral density (BMD), serum 25-OHD, intact parathyroid hormone (iPTH), calcium and estimated glomerular filtration rate (eGFR) were examined in 226 women without vertebral fractures (NO FRACTURE group) and 189 women with at least one moderate/severe vertebral fracture (FRACTURE group). Vertebral fracture assessment (VFA) was evaluated using both the Genant semiquantitative (SQ) approach and morphometry. Results: Patients in the NO FRACTURE group had lower age, increased height, higher calcium intake, and higher BMD compared to those patients in the FRACTURE group (p < 0.05). Of interest, serum levels of 25-OHD in the NO FRACTURE group were higher than those observed in the FRACTURE group (51.73 nmol/L vs. 42.31 nmol/L, p < 0.001). Reinforcing this finding, vitamin D insufficiency (25-OHD < 75 nmol/L) was observed less in the NO FRACTURE group (82.3% vs. 93.65%, p = 0.001). After adjustment for significant variables within the patient population (age, height, race, calcium intake, 25-OHD, eGFR and sites BMD), the logistic-regression analyses revealed that age (OR = 1.09, 95% Cl 1.04-1.14, p < 0.001) femoral neck BMD (OR = 0.7, 95% CI 0.6-0.82, p < 0.001) and 25-OHD <75 nmol/L (OR = 2.38, 95% CI 1.17-4.8, p = 0.016) remains a significant factor for vertebral fracture. Conclusion: Vitamin D insufficiency is a contributing factor for moderate/severe vertebral fractures. This result emphasizes the importance of including this modifiable risk factor in the evaluation of elderly women. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this study, we analyzed whether transplantation of cardiac fibroblasts (CFs) expressing vascular endothelial growth factor (VEGF) mitigates cardiac dysfunction after myocardial infarction (MI) in rats. First, we observed that the transgene expression lasts longer (45 vs 7 days) when fibroblasts are used as vectors compared with myoblasts. In a preventive protocol, induction of cardiac neovascularization accompanied by reduction in myocardial scar area was observed when cell transplantation was performed 1 week before ischemia/reperfusion and the animals analyzed 3 weeks later. Finally, the therapeutic efficacy of this approach was tested injecting cells in a fibrin biopolymer, to increase cardiac retention, 24 h post-MI. After 4 weeks, an increase in neovascularization and a decrease in myocardial collagen were observed only in rats that received cells expressing VEGF. Basal indirect or direct hemodynamic measurements showed no differences among the groups whereas under pharmacological stress, only the group that received cells expressing VEGF showed a significant reduction in end-diastolic pressure and improvement in stroke volume and cardiac work. These results indicate that transplantation of CFs expressing VEGF using fibrin biopolymer induces neovascularization and attenuates left ventricle fibrosis and cardiac dysfunction in ischemic heart. Gene Therapy (2010) 17, 305-314; doi:10.1038/gt.2009.146; published online 10 December 2009
Resumo:
Members of the nuclear factor of activated T cell (NFAT) family of transcription factors were originally described in T lymphocytes but later shown to be expressed in several immune and non-immune cell types. NFAT proteins can modulate cellular transformation intrinsically, and NFAT-deficient (NFAT1-/-) mice are indeed more susceptible to transformation than wild-type counterparts. However, the contribution of an NFAT1-/- microenvironment to tumor progression has not been studied. We have addressed this question by inoculating NFAT1-/- mice with B16F10 melanoma cells intravenously, an established model of tumor homing and growth. Surprisingly, NFAT1-/- animals sustained less tumor growth in the lungs after melanoma inoculation than wild-type counterparts. Even though melanoma cells equally colonize NFAT1-/- and wild-type lungs, tumors do not progress in the absence of NFAT1 expression. A massive mononuclear perivascular infiltrate and reduced expression of TGF-beta in the absence of NFAT1 suggested a role for tumor-infiltrating immune cells and the cytokine milieu. However, these processes are independent of an IL-4-induced regulatory tumor microenvironment, since lack of this cytokine does not alter the phenotype in NFAT1-/- animals. Bone marrow chimera experiments meant to differentiate the contributions of stromal and infiltrating cells to tumor progression demonstrated that NFAT1-induced susceptibility to pulmonary tumor growth depends on NFAT1-expressing parenchyma rather than on bone marrow-derived cells. These results suggest an important role for NFAT1 in radio-resistant tumor-associated parenchyma, which is independent of the anti-tumor immune response and Th1 versus Th2 cytokine milieu established by the cancer cells, but able to promote site-specific tumor growth.
Resumo:
The PKC apoptosis WTI regulator gene, also named prostate apoptosis response-4 (PAR-4), encodes a pro-apoptotic protein that sensitizes cells to numerous apoptotic stimuli. Insulin-like growth factor-1 (IGF-1) and 17 beta-estradiol (E2), two important factors for breast cancer development and progression, have been shown to down-regulate PAR-4 expression and inhibit apoptosis induced by PAR-4 in neuronal cells. In this study, we sought to investigate the mechanisms of regulation of PAR-4 gene expression in MCF-7 cells treated with E2 or IGF-1. E2 (10 nM) and IGF-1 (12.5 nM) each down-regulated PAR-4 expression in MCF-7 cells after 24 h of treatment. The effect of E2 was dependent on ER activation, as demonstrated by an increase in PAR-4 expression when cells were pretreated for 1 h with 1 mu M ICI-182,780 (ICI) before receiving E2 plus ICI. The effect of IGF-1 was abolished by pre-treatment for 1 h with 30 mu M LY294002 (a specific PI3-K inhibitor), and significantly inhibited by 30 mu M SB202190 (a specific p38MAPK inhibitor). We also demonstrated that E2 acts synergistically with IGF-1, resulting in greater down-regulation of PAR-4 mRNA expression compared with E2 or IGF-1 alone. Our results show for the first time that E2 and IGF-1 inhibit PAR-4 gene expression in MCF-7 cells, suggesting that this down-regulation may provide a selective advantage for breast cancer cell survival.
Resumo:
alpha(5)beta(1) integrin from both wild-type CHO cells (CHO-K1) and deficient in proteoglycan biosynthesis (CHO-745) is post-translationally modified by glycosaminoglycan chains. We demonstrated this using [(35)S]sulfate metabolic labeling of the cells, enzymatic degradation, immunoprecipitation reaction with monoclonal antibody, fluorescence microscopy, and flow cytometry. The alpha(5)beta(1) integrin heterodimer is a hybrid proteoglycan containing both chondroitin and heparan sulfate chains. Xyloside inhibition of sulfate incorporation into alpha(5)beta(1) integrin also supports that integrin is a proteoglycan. Also. cells grown with xyloside adhered on fibronectin with no alteration in alpha(5)beta(1) integrin expression. However, haptotactic motility on fibronectin declined in cells grown with xyloside or chlorate as compared with controls. Thus, alpha(5)beta(1) integrin is a proteoglycan and the glycosaminoglycan chains of the integrin influence cell motility on fibronectin. Similar glycosylation of alpha(5)beta(1) integrin was observed in other normal and malignant cells, suggesting that this modification is conserved and important in the function of this integrin. Therefore, these glycosaminoglycan chains of alpha(5)beta(1) integrin are involved in cellular migration on fibronectin.
Resumo:
The ADAM23 gene is frequently silenced in different types of tumors, and, in breast tumors, silencing is correlated with tumor progression, suggesting that it might be associated with the acquisition of a metastatic phenotype. ADAM23 exerts its function mainly through the disintegrin domain, because its metalloprotease domain is inactive. Analysis of ADAM23 binding to integrins has revealed a specific interaction with alpha(v)beta(3) integrin mediated by the disintegrin domain. Altered expression of alpha(v)beta(3) integrin has been observed in different types of tumors, and expression of this integrin in the activated form has been shown to promote metastasis formation. Here, we investigated the possibility that interaction between ADAM23 and alpha(v)beta(3) integrin might negatively modulate alpha(v)beta(3) activation during metastatic progression. ADAM23 expression was knocked down using short hairpin RNA in the MDA-MB-435 cell line, which has been extensively used as a model for alpha(v)beta(3) integrin activation. Ablation of ADAM23 enhanced alpha(v)beta(3) integrin activation by at least 2- to 4-fold and ADAM23 knockdown cells showed enhanced migration and adhesion to classic alpha(v)beta(3) integrin ligands. Ablation of ADAM23 expression also enhanced pulmonary tumor cell arrest in immunodeficient mice. To complement our findings with clinical evidence, we showed that silencing of ADAM23 gene by DNA promoter hypermethylation in a collection of 94 primary breast tumors was significantly associated with lower distant metastases-free and disease-specific survivals and was an independent prognostic factor for poor disease outcome. Our results strongly support a functional role of ADAM23 during metastatic progression by negatively modulating alpha(v)beta(3) integrin activation. [Cancer Res 2009;69(13):5546-52]
Resumo:
Objectives: To examine the effects of triiodothyronine (T(3)), 17 beta-estradiol (E(2)), and tamoxifen (TAM) on transforming growth factor (TGF)-alpha gene expression in primary breast cancer cell cultures and interactions between the different treatments. Methods and results: Patients included in the study (no.=12) had been newly diagnosed with breast cancer. Fresh human breast carcinoma tissue was cut into 0.3-mm slices. These slices were placed in six 35-mm dishes on 2-ml organ culture medium. Dishes received the following treatments: dish 1: ethanol; dish 2: T(3); dish 3: T(3)+TAM; dish 4: TAM; dish 5: E(2); dish 6: E(2)+TAM. TGF-alpha mRNA content was normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels. All tissues included in this study were positive for estrogen receptor (ER) and thyroid hormone receptor expression. Treatment with T(3) for 48 h significantly increased TGF-alpha mRNA levels compared to controls (15-fold), and concomitant treatment with TAM reduced expression to 3.4-fold compared to controls. When only TAM was added to the culture medium, TGF-alpha mRNA expression increased 5.3-fold, significantly higher than with all other treatment modalities. Conclusion: We demonstrate that TGF-alpha mRNA expression is more efficiently upregulated by T(3) than E(2). Concomitant treatment with TAM had a mitigating effect on the T(3) effect, while E(2) induced TGF-alpha upregulation. Our findings show some similarities between primary culture and breast cancer cell lines, but also some important differences: a) induction of TGF-alpha, a mitogenic protein, by TAM; b) a differential effect of TAM that may depend on relative expression of ER alpha and beta; and c) supraphysiological doses of T3 may induce mitogenic signals in breast cancer tissue under conditions of low circulating E(2).. Endocrinol. Invest. 31: 1047-1051, 2008) (c) 2008, Editrice Kurtis
Resumo:
To date, several activating mutations have been discovered in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Two of these, Fl Delta and 1374N, result in a 37 amino acid duplication and a single amino acid substitution in the extracellular domain of h beta c, respectively. A third, V449E, results in a single amino acid substitution in the transmembrane domain, Previous studies comparing the activity of these mutants in different hematopoietic cell lines imply that the transmembrane and extracellular mutations act by different mechanisms and suggest the requirement for cell type-specific molecules in signalling. To characterize the ability of these mutant hpc subunits to mediate growth and differentiation of primary cells and hence investigate their oncogenic potential, we have expressed all three mutants in primary murine hematopoietic cells using retroviral transduction. It is shown that, whereas expression of either extracellular hpc mutant confers factor-independent proliferation and differentiation on cells of the neutrophil and monocyte lineages only, expression of the transmembrane mutant does so on these lineages as well as the eosinophil, basophil, megakaryocyte, and erythroid lineages, Factor-independent myeloid precursors expressing the transmembrane mutant display extended proliferation in liquid culture and in some cases yielded immortalized cell lines. (C) 1997 by The American Society of Hematology.
Resumo:
Background To estimate labeled sun protection factor (SPF) for sunscreen, the amount of product applied on volunteers, according to food and drug administration (FDA) and International protocols, is 2 mg/cm(2). However, different studies have shown that consumers actually apply much less product when exposed to the sun. Previous studies have reported contradictory findings in an attempt to correlate the amount applied in relation to SPF. The objective of the present study was to estimate the influence of the quantity of sunscreen applied in the determination of SPF, according to the FDA methodology. Subjects and methods Forty volunteers were included in two groups (SPF 15 and 30). The selected sunscreen was then applied in four different quantities (2, 1.5, 1.0 and 0.5 mg/cm(2)). All areas were irradiated with a solar simulator. After 24 h, the minimal erythemal dose (MED) and SPF were determined. Results In both groups, we observed that the SPF decreased when the amount of sunscreen applied was decreased. The differences between the 2 mg/cm(2) area and the others were significant in both groups (P < 0.001). The correlation between specified SPF and applied amount grew exponentially. Conclusion The protection provided by sunscreen is related to the amount of product applied. It is essential to educate consumers to apply larger amounts of sunscreen for adequate photoprotection.
Resumo:
The production of Long-R-3-IGF-1 (an IGF-1 fusion analog) by constant-rate, fed-batch fermentation of Escherichia coli yielded 2.6 g fusion protein/L, corresponding to an actual IGF-1 concentration of 2.2 g/L. A novel strategy employing three distinct feeding stages was developed which raised product concentration to 4.3 g/L (3.6 g/L of IGF-1) while minimising glucose and acetate accumulation. This improved productivity was not accompanied by an increase in inclusion body size.
Resumo:
Insulin-like growth factor-I (IGF-I) is a preiotrophic polypeptide which appears to have roles both as a circulating endocrine hormone and as a locally synthesized paracrine or autocrine tissue factor. IGF-I plays a major role in regulating the growth of cells in vivo and in vitro and initiates metabolic and mitogenic processes in a wide variety of cell types by binding to specific type I receptors in the plasma membrane, In this study, we report the distribution of IGF-I receptors in odontogenic cells at the ultrastructural level using the high resolution protein A-gold technique, In the pre-secretory stage, very little gold label was visible over the ameloblasts and odontoblasts, During the secretory stage the label was mostly seen in association with the cell membranes and endoplasmic reticulum of the ameloblasts. Lysosome-like elements in the post-secretory stage were labelled as well as multivesicular dense bodies, Very little labelling was encountered in the ameloblasts in the transitional stage, where apoptotic bodies were clearly visible, The maturation stage also exhibited labelling of the secretory-like granules in the distal surface. The presence of gold particles over the plasma membrane is an indication that IGF-I receptor is a membrane-bound receptor. Furthermore, the intracellular distribution of the label over the endoplasmic reticulum supports the local synthesis of the IGF-I receptor. The absence of labelling over the transitional ameloblasts suggests that the transitional stage may require the non-expression of IGF-I as a prerequiste or even a trigger for apoptosis.
Resumo:
We have investigated molecular mechanisms of the embryonic development of an ascidian, a primitive chordate which shares features of both invertebrates and vertebrates, with a view to identifying genes involved in development and metamorphosis, We isolated 12 partial cDNA sequences which were expressed in a stage-specific manner using differential display, We report here the isolation of a full-length cDNA sequence for one of these genes which was specifically expressed during the tailbud and larval stages of ascidian development, This cDNA, 1213 bp in length, is predicted to encode a protein of 337 amino acids containing four epidermal growth factor (EGF)-like repeats and three novel cysteine-rich repeats, Characterization of its spatial expression pattern by in situ hybridisation in late tailbud and larval embryos demonstrated strong expression localised throughout the papillae and anteriormost trunk and weaker expression in the epidermis of the remainder of the embryo, As recent evidence indicates that the signal for metamorphosis originates in the anterior trunk region, these results suggest that this gene may have a role in signalling the initiation of metamorphosis. (C) 1997 Wiley-Liss, Inc.