879 resultados para MEDIATORS
Resumo:
After filling root canals, the healing process depends on the chemical composition or physical-chemical properties of the material used, among other factors. All root canal sealers, whether solid or plastic, are foreign matter for the body if they remain in permanent contact with apical and periapical tissues. As a result, the first organic reaction that occurs is an attempt to phagocytize the material. During phagocytosis, macrophages release a large number of cell mediators into the area, among which are cytokines that are essential in intercellular communication and in many physiological and pathophysiological processes. One of these cytokines is tumor necrosis factor-alfa (TNF-α), which acts through links to specific receptors on the cell membrane initiating a cascade of events leading to induction, activation, or inhibition of numerous cytokine-regulated genes in the cell nucleus. The release of TNF-α in a cell culture of mouse peritoneal macrophages incubated with three concentrations (25, 50, and 100 mg/ml) of two endodontic sealers was measured. The solutions containing the calcium hydroxide-based root canal sealer (Sealapex) released fewer units of TNF-α than solutions containing the zinc oxide and eugenol-based sealer (Endomethasone).
Resumo:
Staphylococcal enterotoxins are among the most common etiologic agents that cause food poisoning and, possibly, nonmenstrual toxic shock syndrome. These enterotoxins are also called superantigens because they are potent T cell and macrophages activators. The superantigens bind directly to the major histocompatibility complex class II molecules on antigen-presenting cells and stimulate T cells expressing specific Vβ elements in the cell receptors. Excessive production of cytokines by these cells and macrophages are responsible for the pathogenesis of food poisoning. These cytokine include tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-1, proinflamatory mediators with potent immunoenhancing effects; the nitric oxide (NO). It still has both effects citotoxic and regulatory roles in immune function.
Resumo:
Objective: The objective of the present investigation was to assess the histological effects of different wavelengths and intensities on the healing process of cutaneous wounds. Background Data: Tissue repair is a dynamic interactive process which involves mediators, cells and extra-cellular matrix. Several reports on the use of laser therapy have shown that the healing process is positively affected when the correct parameters are used. Methods: Eighteen standardized wounds were surgically created on the dorsum of male and female Wistar rats, which were subsequently divided into two experimental groups according to wavelength used λ.670 or λ685 nm) for lasertherapy (LLLT). Each group was divided into three subgroups of three animals according to the intensity of the applied irradiation (2,15, or 25 mW). Twelve animals were used as entreated controls and were not irradiated. The irradiation was carried out during seven consecutive days. The animals were sacrificed eight days after surgery. The specimens were removed, kept in 4% formaldehyde for 24 h, routinely prepared to wax, stained with H&E, and analyzed under light microscopy. Results: For both groups, light microscopy showed a substitution repair process; however, when LLLT was used, a positive biomodulatory effect was detectable, chiefly associated with shorter wavelength and low intensity. Conclusions: The results of the present study indicate that LLLT improved cutaneous wound repair and that the effect is a result of an inversely proportional relationship between wavelength and intensity, with treatment more effective when combining higher intensity with short wavelength or lower intensity with higher wavelength.
Resumo:
The tuberculostatic drug rifampicin has been described as a scavenger of reactive species. Additionally, the recent demonstration that oral therapy with a complex of rifampicin and horseradish peroxidase (HRP) was more effective than rifampicin alone, in an animal model of experimental leprosy, suggested the importance of redox reactions involving rifampicin and their relevance to the mechanism of action. Hence, we studied the oxidation of rifampicin catalyzed by HRP, since this enzyme may represent the prototype of peroxidation-mediated reactions. We found that the antibiotic is efficiently oxidized and that rifampicin-quinone is the product, in a reaction dependent on both HRP and hydrogen peroxide. The steady-state kinetic constants Km app (101±23 mmol/l), Vmax app (0.78±0.09 μmol/l·s-1) and kcat (5.1±0.6 s-1) were measured (n=4). The reaction rate was increased by the addition of co-substrates such as tetramethylbenzidine, salicylic acid, 5-aminosalicylic acid and paracetamol. This effect was explained by invoking an electron-transfer mechanism by which these drugs acted as mediators of rifampicin oxidation. We suggested that this drug interaction might be important at the inflammatory site. © 2005 Pharmaceutical Society of Japan.
Resumo:
The recent appreciation of the role played by endogenous counterregulatory mechanisms in controlling the outcome of the host inflammatory response requires specific analysis of their spatial and temporal profiles. In this study, we have focused on the glucocorticoid-regulated anti-inflammatory mediator annexin 1. Induction of peritonitis in wild-type mice rapidly (4 h) produced the expected signs of inflammation, including marked activation of resident cells (e.g., mast cells), migration of blood-borne leukocytes, mirrored by blood neutrophilia. These changes subsided after 48-96 h. In annexin 1null mice, the peritonitis response was exaggerated (∼40% at 4 h), with increased granulocyte migration and cytokine production. In blood leukocytes, annexin 1 gene expression was activated at 4, but not 24, h postzymosan, whereas protein levels were increased ai both time points. Locally, endothelial and mast cell annexin 1 gene expression was not detectable in basal conditions, whereas it was switched on during the inflammatory response. The significance of annexin 1 system plasticity in the anti-inflammatory properties of dexamethasone was assessed. Clear induction of annexin 1 gene in response to dexamethasone treatment was evident in the circulating and migrated leukocytes, and in connective tissue mast cells; this was associated with the steroid failure to inhibit leukocyte trafficking, cytokine synthesis, and mast cell degranulation in the annexin 1null mouse. In conclusion, understanding how inflammation is brought under control will help clarify the complex interplay between pro- and anti-inflammatory pathways operating during the host response to injury and infection. Copyright © 2006 by The American Association of Immunologists, Inc.
Resumo:
Phenolic compounds are numerous and ubiquitous in the plant kingdom, being particularly present in health-promoting foods. Epidemiological evidences suggest that the consumption of polyphenol-rich foods reduces the incidence of cancer, coronary heart disease and inflammation. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. Data obtained from in vivo and in vitro experiments show that CGA mostly presents antioxidant and anti-carcinogenic activities. However, the effects of CGA on the inflammatory reaction and on the related pain and fever processes have been explored less so far. Therefore, this study was designed to evaluate the anti-inflammatory, antinociceptive and antipyretic activities of CGA in rats. In comparison to control, CGA at doses 50 and 100 mg/kg inhibited carrageenin-induced paw edema beginning at the 2nd hour of the experimental procedure. Furthermore, at doses 50 and 100 mg/kg CGA also inhibited the number of flinches in the late phase of formalin-induced pain test. Such activities may be derived from the inhibitory action of CGA in the peripheral synthesis/release of inflammatory mediators involved in these responses. On the other hand, even at the highest tested dose (200 mg/kg), CGA did not inhibit the febrile response induced by lipopolysaccharide (LPS) in rats. Additional experiments are necessary in order to clarify the true target for the anti-inflammatory and analgesic effects of CGA. © 2006 Pharmaceutical Society of Japan.
Resumo:
In the present study, we investigate whether mast cells and macrophages are involved in the control of IL-1β-induced neutrophil migration, as well as the participation of chemotactic mediators. IL-1β induced a dose-dependent neutrophil migration to the peritoneal cavity of rats which depends on LTB 4, PAF and cytokines, since the animal treatment with inhibitors of these mediators (MK 886, PCA 4248 and dexamethasone respectively) inhibited IL-1β-induced neutrophil migration. The neutrophil migration induced by IL-1β is dependent on mast cells and macrophages, since depletion of mast cells reduced the process whereas the increase of macrophage population enhanced the migration. Moreover, mast cells or macrophages stimulated with IL-1β released a neutrophil chemotactic factor, which mimicked the neutrophil migration induced by IL-1β. The chemotactic activity of the supernatant of IL-1β-stimulated macrophages is due to the presence of LTB4, since MK 886 inhibited its release. Moreover, the chemotactic activity of IL-1β-stimulated mast cells supernatant is due to the presence of IL-1β and TNF-α, since antibodies against these cytokines inhibited its activity. Furthermore, significant amounts of these cytokines were detected in the supernatant. In conclusion, our results suggest that neutrophil migration induced by IL-1β depends upon LTB4 released by macrophages and upon IL-1β and TNFα released by mast cells. © 2007 Springer Science+Business Media, LLC.
Resumo:
Objective: The objective of this study was to investigate the mediators and the resident peritoneal cells involved in the neutrophil migration (NM) induced by mineral trioxide aggregate (MTA) in mice. Study design: MTA (25 mg/cavity) was injected into normal and pretreated peritoneal cavities (PC) with indomethacin (IND), dexamethasone (DEX), BWA4C, U75302, antimacrophage inflammatory protein-2 (MIP-2), and anti-interleukin-1β (IL-1β) antibodies and the NM was determined. The role of macrophage (MO) and mast cells (MAST) was determined by administration of thioglycollate 3% or 48/80 compound, respectively. The concentration of IL-1β and MIP-2 exudates was measured by ELISA. Results: MTA induced dose- and time-dependent NM into mice PC, with the participation of MO and MAST. NM was inhibited by DEX, BWA4C, and U75302, as well as anti-MIP-2 and anti-IL-1β antibodies. In the exudates, IL-1β and MIP-2 were detected. Conclusions: This study suggests that MTA induces NM via a mechanism dependent on MAST and MO mediated by IL-1β, MIP-2, and LTB4. © 2008 Mosby, Inc. All rights reserved.
Resumo:
The most frequent cause of vasodilatory shockis outcome from sepsis, a systemic inflammatory response to infection, characterized by hypotension, hyporeactivity to the catecholamines and disseminated intravascular coagulation. The commonest cause of sepsis has reported to be infection with Gram-negative bacteria, typically E. coli, resulting in the release of lipopolysaccharide (endotoxin) from the bacterial outer membrane during autolysis or death of these microorganisms, with the involvement of many mediators, including nitric oxide. Later it was found that plasma levels of vasopressin in sepsis patients were abnormally low and observed that some patients with advanced septic shock were extremely sensitive to the activity actions of exogenous vasopressin.
Resumo:
Coronary heart disease (CHD) is the most common cause of death in many developed countries. The major risk factors for CHD are smoking, high blood pressure, diabetes, high cholesterol levels, and lack of physical activity. Importantly, passive smoke also increases the risk for CHD. The mechanisms involved in the effects of passive smoke in CHD are complex and include endothelial dysfunction, lipoprotein modification, increased inflammation and platelet activation. Recently, several studies have shown that exposure to tobacco smoke can result in cardiac remodeling and compromised cardiac function. Potential mechanisms for these alterations are neurohumoral activation, oxidative stress, and MAPK activation. Although the vascular effects of cigarette smoke exposure are well known, the effects of tobacco smoking on the heart have received less attention. Therefore, this review will focus on the recent findings as to the effects of passive smoking in acute and chronic phases of vascular and cardiac remodeling. © 2009 Bentham Science Publishers Ltd.
Resumo:
Ethnopharmacological relevance: Lychnophora passerina (Asteraceae), popularly known as arnica, is used to treat inflammation, pain, rheumatism, contusions, bruises and insect bites in Brazilian traditional medicine. Materials and methods: The anti-inflammatory activity of crude ethanolic extract of aerial parts of L. passerina and its ethyl acetate and methanolic fractions had their abilities to modulate the production of NO, TNF-α and IL-10 inflammatory mediators in LPS/IFN-γ-stimulated J774.A1 macrophages evaluated. Moreover, the crude ethanolic extract and derived fractions were also in vivo assayed by carrageenan-induced paw oedema in mice. Results: In vitro assays showed remarkable anti-inflammatory activity of L. passerina crude ethanolic extract (EE) and its ethyl acetate (A) and methanolic (M) fractions, through the inhibition of production of NO and TNF-α inflammatory mediators and induction of production of IL-10 anti-inflammatory cytokine. In vivo assays showed anti-inflammatory activity for EE 10% ointment, similar to the standard drug diclofenac gel. The A and M fraction ointments 20% presented anti-inflammatory activity. Conclusion: The results obtained showed that possible anti-inflammatory effects of EE and its A and M fractions may be attributed to inhibition pro-inflammatory cytokines production, TNF-α and NO and to increased IL-10 production. EE, A and M ointments showed topical in vivo anti-inflammatory activity. The in vivo anti-inflammatory activity of EE of L. passerina may be related to synergistic effects of different substances in the crude extract. Therefore, traditional use of aerial parts of L. passerina in the inflammatory conditions could be beneficial to treat topical inflammatory conditions, as evidenced by the present study. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To investigate the role of mast cells and annexin-A1 (Anxa1) in endotoxin-induced uveitis (EIU). Methods: EIU was induced by injection of lipopolysaccharide (LPS) into the paws of rats, which were then sacrificed after 24 and 48 h. To assess EIU in the absence of mast cells, groups of animals were pretreated with compound 48/80 (c48/80) and sacrificed after 24 h after no treatment or EIU induction. The eyes were used for histological studies and the aqueous humor (AqH) pool was used for the analysis of transmigrated cells and Anxa1 levels. In inflammatory cells, Anxa1 expression was monitored by immunohistochemistry. Results: After 24 h, rats with EIU exhibited degranulated mast cells, associated with elevated numbers of infiltrating leukocytes and the high expression of Anxa1 in the AqH and the neutrophils. After 48 h of EIU, the mast cells were intact, indicating granule re-synthesis, and there was a reduction of neutrophil transmigration and an increase in the number of mononuclear phagocytic cells in ocular tissues. Anxa1 expression was decreased in neutrophils but increased in mononuclear phagocytic cells. In the animals pretreated with c48/80 and subjected to EIU, mast cells responded to this secretagogue by degranulating and few transmigrated neutrophils were observed. Conclustions: We report that mast cells are a potential source of pharmacological mediators that are strongly linked to the pathophysiology of EIU, and the endogenous protein Anxa1 is a mediator in the homeostasis of the inflammatory process with anti-migratory effects on leukocytes, which supports further studies of this protein as an innovative therapy for uveitis. © 2011 Molecular Vision.
Resumo:
Periodontal disease (PD) is characterized as an inflammatory process that compromises the support and protection of the periodontium. Patients with Down's syndrome (DS) are prone to develop PD. Neutrophils (NE) are the first line of defense against infection and their absence sets the stage for disease. Aim: To compare the activity and function of NE in the peripheral blood from DS patients with and without PD, assisted at the Center for Dental Assistance to Patients with Special Needs affiliated with the School of Dentistry of Araçatuba, Brazil. Methods: Purified NE were collected from peripheral blood of 22 DS patients. NE were used to detect the 5-lypoxigenase (5-LO) expression by RT-PCR. Plasma from peripheral blood was collected to measure tumor necrosis factor-a (TNF-α) and interleukin-8 (IL-8) by ELISA and nitrite (NO 3) using a Griess assay. Results: Data analysis demonstrated that DS patients with PD present high levels of TNF-a and IL-8 when compared with DS patients without PD. However, there was no statistically significant difference in the levels of NO 3 production between the groups. The levels of the inflammatory mediator 5-LO expression increased in DS patients with PD. Conclusions: According with these results, it was concluded that TNF-α and IL-8 are produced by DS patients with PD. Furthermore, DS patients with PD presented high levels of 5-LO expression, suggesting the presence of leukotriene B 4 (LTB 4) in PD, thus demonstrating that the changes in NE function due to the elevation of inflammatory mediators contribute to PD.
Resumo:
Objectives: It was previously reported the clinical results of placing subgingival resin-modified glass ionomer restoration for treatment of gingival recession associated with non-carious cervical lesions. The aim of this study was to evaluate the influence of this treatment on the subgingival biofilm and gingival crevicular fluid (GCF) inflammatory markers. Materials and methods: Thirty-four patients presenting the combined defect were selected. The defects were treated with either connective tissue graft plus modified glass ionomer restoration (CTG+R) or with connective tissue graft only (CTG). Evaluation included bleeding on probing and probing depth, 5 different bacteria targets in the subgingival plaque assessed at baseline, 45, and 180 days post treatments, and 9 inflammatory mediators were also assessed in the GCF. Results: The levels of each target bacterium were similar during the entire period of evaluation (p > 0. 05), both within and between groups. The highest levels among the studied species were observed for the bacterium associated with periodontal health. Additionally, the levels of all cyto/chemokines analyzed were not statistically different between groups (p > 0. 05). Conclusion: Within the limits of the present study, it can be concluded that the presence of subgingival restoration may not interfere with the subgingival microflora and with GCF inflammatory markers analyzed. Clinical relevance: This approach usually leads to the placement of a subgingival restoration. There is a lack of information about the microbiological and immunological effects of this procedure. The results suggest that this combined approach may be considered as a treatment option for the lesion included in this study. © 2012 Springer-Verlag.
Resumo:
Sporotrichosis is an infection caused by the dimorphic fungus Sporothrix schenckii. Toll-like receptors (TLRs) play an important role in immunity, since they bind to pathogen surface antigens and initiate the immune response. However, little is known about the role of TLR-2 and fungal surface antigens in the recognition of S. schenckii and in the subsequent immune response. This study aimed to evaluate the involvement of TLR-2 and fungal surface soluble (SolAg) and lipidic (LipAg) antigens in phagocytosis of S. schenckii and production of immune mediators by macrophages obtained from WT and TLR-2 -/- animals. The results showed that TLR-2-/- animals had had statistical lower percentage of macrophages with internalized yeasts compared to WT. SolAg and LipAg impaired phagocytosis and immunological mediator production for both WT and TLR-2-/-. The absence of TLR-2 led to lower production of the cytokines TNF, IL-1β, IL-12 and IL-10 compared to WT animals. These results suggest a new insight in relation to how the immune system, through TLR-2, recognizes and induces the production of mediators in response to the fungus S. schenckii. Copyright © Informa Healthcare USA, Inc.