993 resultados para MASTICATORY FUNCTION
Resumo:
Spherical indentation creep testing was used to examine the effect of hydration state on bone mechanical properties. Analysis of creep data was based on the elastic-viscoelastic correspondence principle and utilized a direct solution for the finite loading-rate experimental conditions. The zero-time shear modulus was computed from the creep compliance function and compared to the indentation modulus obtained via conventional indentation analysis, based on an elastic unloading response. The method was validated using a well-known polymer material under three different loading conditions. The method was applied to bone samples prepared with different water content by partial exchange with ethanol, where 70% ethanol was considered as the baseline condition. A hydration increase was associated with a 43% decrease in stiffness, while a hydration decrease resulted in a 20% increase in bone tissue stiffness.
Resumo:
Bone is an anisotropic material, and its mechanical properties are determined by its microstructure as well as its composition. Mechanical properties of bone are a consequence of the proportions of, and the interactions between, mineral, collagen and water. Water plays an important role in maintaining the mechanical integrity of the composite, but the manner in which water interacts within the ultrastructure is unclear. Dentine being an isotropic two-dimensional structure presents a homogenous composite to examine the dehydration effects. Nanoindentation methods for determining the viscoelastic properties have recently been developed and are a subject of great interest. Here, one method based on elastic-viscoelastic correspondence for 'ramp and hold' creep testing (Oyen, J. Mater. Res., 2005) has been used to analyze viscoelastic behavior of polymeric and biological materials. The method of 'ramp and hold' allows the shear modulus at time zero to be determined from fitting of the displacement during the maximum load hold. Changes in the viscoelastic properties of bone and dentine were examined as the material was systematically dehydrated in a series of water:solvent mixes. Samples of equine dentine were sectioned and cryo-polished. Shear modulus was obtained by nanoindentation using spherical indenters with a maximum load hold of 120s. Samples were tested in different solvent concentrations sequentially, 70% ethanol to 50% ethanol, 70 % ethanol to 100% ethanol, 70% ethanol to 70% methanol to 100% methanol, and 70% ethanol to 100% acetone, after storage in each condition for 24h. By selectively removing and then replacing water from the composite, insights in to the ultrastructure of the tissue can be gained from the corresponding changes in the experimentally determined moduli, as well as an understanding of the complete reversibility of the dehydration process. © 2006 Materials Research Society.
Resumo:
Group IIA phospholipase A(2) (PLA(2)) are major components in Viperidae/Crotalidae venom. In the present study, a novel PLA(2) named promutoxin with Arg at the site 49 has been purified from the venom of Protobothrops muerosquamatus by chromatography. It
Resumo:
Small RNAs have several important biological functions. MicroRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) regulate mRNA stability and translation, and siRNAs cause post-transcriptional gene silencing of transposons, viruses and transgenes and are important in both the establishment and maintenance of cytosine DNA methylation. Here, we study the role of the four Arabidopsis thaliana DICER-LIKE genes (DCL1-DCL4) in these processes. Sequencing of small RNAs from a dcl2 dcl3 dcl4 triple mutant showed markedly reduced tasiRNA and siRNA production and indicated that DCL1, in addition to its role as the major enzyme for processing miRNAs, has a previously unknown role in the production of small RNAs from endogenous inverted repeats. DCL2, DCL3 and DCL4 showed functional redundancy in siRNA and tasiRNA production and in the establishment and maintenance of DNA methylation. Our studies also suggest that asymmetric DNA methylation can be maintained by pathways that do not require siRNAs.
Resumo:
Background: Many conserved secondary structures have been identified within conserved elements in the human genome, but only a small fraction of them are known to be functional RNAs. The evolutionary variations of these conserved secondary structures in h
Resumo:
Cerebral prefrontal function is one of the important aspects in neurobiology. Based on the experimental results of neuroanatomy, neurophysiology, behavioral sciences, and the principles of cybernetics and information theory after constructed a simple model simulating prefrontal control function, this paper simulated the behavior of Macaca mulatta completing delayed tasks both before and after its cerebral prefrontal cortex being damaged. The results indicated that there is an obvious difference in the capacity of completing delayed response tasks for the normal monkeys and those of prefrontal cortex cut away. The results are agreement with experiments. The authors suggest that the factors of affecting complete delayed response tasks might be in information keeping and extracting of memory including information storing, keeping and extracting procedures rather than in information storing process.
Resumo:
Dendritic cells (DCs) play a pivotal role in linking the innate immunity and acquired immunity in responses to pathogen. Non-human primates such as Chinese Rhesus Macaque (CRM) are the favorable models for preclinical study of potential therapeutic drugs,