893 resultados para Ludovico Sforza, Duke of Milan, 1452-1508.
Resumo:
Measurements and predictions are made of a short-cowl coflowing jet with a bypass ratio of 8:1. The Reynolds number is 300,000, and the inlet Mach numbers are representative of aeroengine conditions. The low Reynolds number of the measurements makes the case well suited to the assessment of large-eddy-simulation-related strategies. The nozzle concentricity is carefully controlled to deal with the emerging metastability issues of jets with coflow. Measurements of mean quantities and turbulence statistics are made using both laser Doppler anemometry and particle image velocimetry. The simulations are completed on 6× 106, 12× 106, and 50 × 106 cell meshes. To overcome near-wall modeling problems, a hybrid large-eddy-simulation-Reynolds-averaged-Navier-Stokesrelated method is used. The near-wall Reynolds-averaged-Navier-Stokes layer is helpful in preventing nonphysical separation from the nozzle wall.Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
To investigate whether vortex generators can be an effective form of passive flow control an experimental investigation has been conducted in a small-scale wind tunnel. With specific emphasis on supersonic inlet applications flow separation was initiated using a combined terminal shock wave and subsonic diffuser: a configuration that has been developed as a part of a program to produce a more inlet-relevant flowfield in a small-scale wind tunnel than previous studies. When flow control was initially introduced little overall flow improvement was obtained as the losses tended to be redistributed instead of removed. It became apparent that there existed a strong coupling between the center-span flow and the corner flows. As a consequence, only when flow control was applied to both the corner flows and center-span flow was a significant flow improvement obtained. When corner suction and center-span vortex generators were employed in tandem separation was much reduced and wall-pressure and stagnation pressure were notably improved. As a result, when applied appropriately, it is thought that vortex generators do have the potential to reduce the dependence on boundary-layer bleed for the purpose of separation suppression. Copyright © 2012 by Neil Titchener and Holger Babinsky. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
A series of fluid-structure interaction simulations of an aerodynamic tension-cone supersonic decelerator prototype intended for large mass payload deployment in planetary explorations are discussed. The fluid-structure interaction computations combine large deformation analysis of thin shells with large-eddy simulation of compressible turbulent flows using a loosely coupled approach to enable quantification of the dynamics of the vehicle. The simulation results are compared with experiments carried out at the NASA Glenn Research Center. Reasonably good agreement between the simulations and the experiment is observed throughout a deflation cycle. The simulations help to illuminate the details of the dynamic progressive buckling of the tension-cone decelerator that ultimately results in the collapse of the structure as the inflation pressure is decreased. Furthermore, the tension-cone decelerator exhibits a transient oscillatory behavior under impulsive loading that ultimately dies out. The frequency of these oscillations was determined to be related to the acoustic time scale in the compressed subsonic region between the bow shock and the structure. As shown, when the natural frequency of the structure and the frequency of the compressed subsonic region approximately match, the decelerator exhibits relatively large nonaxisymetric oscillations. The observed response appears to be a fluid-structure interaction resonance resulting from an acoustic chamber (pistonlike) mode exciting the structure. Copyright © 2013 by Christopher Porter, R. Mark Rennie, Eric J. Jumper.
Resumo:
An easy-to-interpret kinematic quantity measuring the average corotation of material line segments near a point is introduced and applied to vortex identification. At a given point, the vector of average corotation of line segments is defined as the average of the instantaneous local rigid-body rotation over "all planar cross sections" passing through the examined point. The vortex-identification method based on average corotation is a one-parameter, region-type local method sensitive to the axial stretching rate as well as to the inner configuration of the velocity gradient tensor. The method is derived from a well-defined interpretation of the local flow kinematics to determine the "plane of swirling" and is also applicable to compressible and variable-density flows. Practical application to direct numerical simulation datasets includes a hairpin vortex of boundary-layer transition, the reconnection process of two Burgers vortices, a flow around an inclined flat plate, and a flow around a revolving insect wing. The results agree well with some popular local methods and perform better in regions of strong shearing. Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Cubic boron nitride (c-BN) films were prepared by ion beam assisted deposition (IBAD) technique, and the stresses were primary estimated by measuring the frequency shifts in the infrared-absorption peaks of c-BN samples. To test the possible effects of other factors, dependencies of the c-BN transversal optical mode position on film thickness and c-BN content were investigated. Several methods for reducing the stress of c-BN films including annealing, high temperature deposition, two-stage process, and the addition of a small amount of Si were studied, in which the c-BN films with similar thickness and cubic phase content were used to evaluate the effects of the various stress relief methods. It was shown that all the methods can reduce the stress in c-BN films to various extents. Especially, the incorporation of a small amount of Si (2.3 at.%) can result in a remarkable stress relief from 8.4 to similar to 3.6 GPa whereas the c-BN content is nearly unaffected, although a slight degradation of the c-BN crystallinity is observed. The stress can be further reduced down below I GPa by combination of the addition of Si with the two-stage deposition process. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
IEECAS SKLLQG
Resumo:
Employing the recoil ion momentum spectroscopy we investigate the collision between He2+ and argon atoms. By measuring the recoil longitudinal momentum the energy losses of projectile are deduced for capture reaction channels. It is found that in most cases for single- and double-electron capture, the inner electron in the target atom is removed, the recoil ion is in singly or multiply excited states (hollow ion is formed), which indicates that electron correlation plays an important role in the process. The captured electrons prefer the ground states of the projectile. It is experimentally demonstrated that the average energy losses are directly related to charge transfer and electronic configuration.
Resumo:
For the first time, we report a sensitive and selective method to detect Cu2+ based on the electrochemiluminescence quenching of CdTe quantum dots (QDs) in aqueous solution. The mercaptosuccinic acid (MSA) protected CdTe QDs were prepared and characterized with UV, fluorescence and ECL. The anodic ECL quenching mechanism was attributed to the fact that MSA capping was removed from the surface of the CdTe QDs and preferentially bound with Cu2+. The displacement of MSA capping layer created imperfections on the CdTe QDs surface, and eventually led to the ECL quenching.
Resumo:
A new approach for the synthesis of polyaniline nanofibers under pseudo-high dilute conditions in aqueous system has been developed. High yield nanoscale polyaniline fibers with 18-110 nm in diameter are readily prepared by a high aniline concentration 0.4 M oxidation polymerization using ammonium persulfate (APS) as an oxidant in the presence of hydrochloric acid (HCl), perchloric acid (HClO4), (1S)-(+)-10-camphorsulfonic acid (CSA), acidic phosphate PAEG120 (PA120) and sulfuric acid (H2SO4) as the dopants. The novel pathway always produces polyaniline nanofibers of tunable diameters, high conductivity (from 10(0) to 10(1) S/cm) and crystallinity.
Resumo:
The phase stability of lanthanum cerium oxide (La2Ce2O7), which is stable up to 1400 degrees C, and the thermal expansion coefficient of La2Ce2O7 doped with Ta2O5 or WO3 were studied. The thermal expansion coefficient of La2Ce2O7 below 400 degrees C was increased by adding more CeO2 or doping with either Ta2O5 or WO3.