895 resultados para Low voltage systems
Resumo:
Reaaliaikaisten käyttöjärjestelmien käyttö sulautetuissa järjestelmissä on kasvamassa koko ajan. Sulautettuja tietokoneita käytetään yhä useammassa kohteessa kuten sähkökäyttöjen ohjauksessa. Sähkökäyttöjen ohjaus hoidetaan nykyisin yleensä nopealla digitaalisella signaaliprosessorilla (DSP), jolloin ohjelmointi ja päivittäminen on hidasta ja vaikeaa johtuen käytettävästä matalan tason Assembler-kielestä. Ratkaisuna yleiskäyttöisten prosessorien ja reaaliaikakäyttöjärjestelmien käyttö. Kaupalliset reaaliaikakäyttöjärjestelmät ovat kalliita ja lähdekoodin saaminen omaan käyttöön jopa mahdotonta. Linux on ei-kaupallinen avoimen lähdekoodin käyttöjärjestelmä, joten sen käyttö on ilmaista ja sitä voi muokata vapaasti. Linux:iin on saatavana useita laajennuksia, jotka tekevät siitä reaaliaikaisen käyttöjärjestelmän. Vaihtoehtoina joko kova (hard) tai pehmeä (soft) reaaliaikaisuus. Linux:iin on olemassa valmiita kehitysympäristöjä mutta ne kaipaavat parannusta ennen kuin niitä voidaan käyttää suuressa mittakaavassa teollisuudessa. Reaaliaika Linux ei sovellus nopeisiin ohjauslooppeihin (<100 ms) koska nopeus ei riitä vielä mutta nopeus kasvaa samalla kun prosessorit kehittyvät. Linux soveltuu hyvin rajapinnaksi nopean ohjauksen ja käyttäjän välille ja hitaampaan ohjaukseen.
Resumo:
Recent research has highlighted the existence of a social bias in the extent to which children have access to childcare. In general, children living in higher income households are more likely to be cared for in childcare centres. While the existence of a social bias in access to childcare services has been clearly demonstrated, we currently lack a clear explanation as to why this is the case. This paper uses a unique dataset based on survey data collected specifically to study patterns of childcare use in the Swiss canton of Vaud (N = 875). The paper exploits the variation in the way childcare is organised within the canton. Childcare is a municipal policy, as a result of which there are twenty-nine different systems in operation. Fees are progressive everywhere, but variation is substantial. Availability is also very different. This peculiar institutional setup provides an ideal situation to examine the determinants of childcare use by different income groups. Our findings suggest that differences in the fees charged to low-income households, as well as the degree of progressivity of the fee structure, are significant predictors of use, while availability seems to matter less.
Resumo:
We report optical spectroscopic observations of a sample of 6 low-galactic latitude microquasar candidates selected by cross-identification of X-ray and radio point source catalogs for |b|<5 degrees. Two objects resulted to be of clear extragalactic origin, as an obvious cosmologic redshift has been measured from their emission lines. For the rest, none exhibits a clear stellar-like spectrum as would be expected for genuine Galactic microquasars. Their featureless spectra are consistent with being extragalactic in origin although two of them could be also highly reddened stars. The apparent non-confirmation of our candidates suggests that the population of persistent microquasar systems in the Galaxy is more rare than previously believed. If none of them is galactic, the upper limit to the space density of new Cygnus X-3-like microquasars within 15 kpc would be 1.1\times10^{-12} per cubic pc. A similar upper limit for new LS 5039-like systems within 4 kpc is estimated to be 5.6\times10^{-11} per cubic pc.
Resumo:
N-type as well P-type top-gate microcrystalline silicon thin film transistors (TFTs) are fabricated on glass substrates at a maximum temperature of 200 °C. The active layer is an undoped μc-Si film, 200 nm thick, deposited by Hot-Wire Chemical Vapor. The drain and source regions are highly phosphorus (N-type TFTs) or boron (P-type TFTs)-doped μc-films deposited by HW-CVD. The gate insulator is a silicon dioxide film deposited by RF sputtering. Al-SiO 2-N type c-Si structures using this insulator present low flat-band voltage,-0.2 V, and low density of states at the interface D it=6.4×10 10 eV -1 cm -2. High field effect mobility, 25 cm 2/V s for electrons and 1.1 cm 2/V s for holes, is obtained. These values are very high, particularly the hole mobility that was never reached previously.
Resumo:
Population studies of unidentified EGRET sources suggest that there exist at least three different populations of galactic gamma-ray sources. One of these populations is formed by young objects distributed along the galactic plane with a strong concentration toward the inner spiral arms of the Galaxy. Variability, spectral and correlation analysis indicate that this population is not homogeneous. In particular, there is a subgroup of sources that display clear variability in their gamma-ray fluxes on timescales from days to months. Following the proposal by Kaufman Bernad\'o et al. (2002), we suggest that this group of sources might be high-mass microquasars, i.e. accreting black holes or neutron stars with relativistic jets and early-type stellar companions. We present detailed inhomogeneous models for the gamma-ray emission of these systems that include both external and synchrotron self-Compton interactions. We have included effects of interactions between the jet and all external photon fields to which it is exposed: companion star, accretion disk, and hot corona. We make broadband calculations to predict the spectral energy distribution of these objects from radio up to GeV energies. The results and predictions can be tested by present and future gamma-ray instruments like INTEGRAL, AGILE, and GLAST.
Resumo:
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Cationic nanovesicles have attracted considerable interest as effective carriers to improve the delivery of biologically active molecules into and through the skin. In this study, lipid-based nanovesicles containing three different cationic lysine-based surfactants were designed for topical administration. We used representative skin cell lines and in vitro assays to assess whether the cationic compounds modulate the toxic responses of these nanocarriers. The nanovesicles were characterized in both water and cell culture medium. In general, significant agglomeration occurred after 24 h incubation under cell culture conditions. We found different cytotoxic responses among the formulations, which depended on the surfactant,cell line (3T3, HaCaT, and THP-1) and endpoint assayed (MTT, NRU, and LDH). Moreover, no potential phototoxicity was detected in fibroblast or keratinocyte cells, whereas only a slight inflammatory response was induced, as detected by IL-1a and IL-8 production in HaCaT and THP-1 cell lines, respectively. A key finding of our research was that the cationic charge position and the alkyl chain length of the surfactants determine the nanovesicles resulting toxicity. The charge on the a-amino group of lysine increased the depletion of cell metabolic activity, as determined by the MTT assay, while a higher hydrophobicity tends to enhance the toxic responses of the nanovesicles. The insights provided here using different cell lines and assays offer a comprehensive toxicological evaluation of this group of new nanomaterials.
Resumo:
Background: Cardiovascular disease (CVD), mainly heart attack and stroke, is the leading cause of premature mortality in low and middle income countries (LMICs). Identifying and managing individuals at high risk of CVD is an important strategy to prevent and control CVD, in addition to multisectoral population-based interventions to reduce CVD risk factors in the entire population. Methods: We describe key public health considerations in identifying and managing individuals at high risk of CVD in LMICs. Results: A main objective of any strategy to identify individuals at high CVD risk is to maximize the number of CVD events averted while minimizing the numbers of individuals needing treatment. Scores estimating the total risk of CVD (e.g. ten-year risk of fatal and non-fatal CVD) are available for LMICs, and are based on the main CVD risk factors (history of CVD, age, sex, tobacco use, blood pressure, blood cholesterol and diabetes status). Opportunistic screening of CVD risk factors enables identification of persons with high CVD risk, but this strategy can be widely applied in low resource settings only if cost effective interventions are used (e.g. the WHO Package of Essential NCD interventions for primary health care in low resource settings package) and if treatment (generally for years) can be sustained, including continued availability of affordable medications and funding mechanisms that allow people to purchase medications without impoverishing them (e.g. universal access to health care). This also emphasises the need to re-orient health systems in LMICs towards chronic diseases management.
Resumo:
Female gender and low income are two markers for groups that have been historically disadvantaged within most societies. The study explores two research questions related to their political representation: 1) Are parties ideologically biased towards the ideological preferences of male and rich citizens? 2) Does the proportionality of the electoral system moderate the degree of underrepresentation of women and poor citizens in the party system? A multilevel analysis of survey data from 24 parliamentary democracies indicates that there is some bias against those with low income and, at a much smaller rate, women. This has systemic consequences for the quality of representation, as the preferences of the complementary groups differ. The proportionality of the electoral system influences the degree of underrepresentation: specifically, larger district magnitudes help closing the considerable gap between rich and poor.
Resumo:
A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.
Resumo:
A spectrofluorometric method has been developed and validated for the determination of gemfibrozil. The method is based on the excitation and emission capacities of gemfibrozil with excitation and emission wavelengths of 276 and 304 nm respectively. This method allows de determination of the drug in a self-nanoemulsifying drug delivery system (SNEDDS) for improve its intestinal absorption. Results obtained showed linear relationships with good correlation coefficients (r(2)>0.999) and low limits of detection and quantification (LOD of 0.075 μg mL(-1) and LOQ of 0.226 μg mL(-1)) in the range of 0.2-5 μg mL(-1), equally this method showed a good robustness and stability. Thus the amounts of gemfibrozil released from SNEDDS contained in gastro resistant hard gelatine capsules were analysed, and release studies could be performed satisfactorily.
Resumo:
In the literature survey retention mechanisms, factors effecting retention and microparticles were studied. Also commercial microparticle retention systems and means to measure retention were studied. Optical retention measurement with RPA and Lasentec FBRM was studied. The experimental part contains study of different cationic polyacrylamides, anionic silica, bentonite and new generation micropolymer. In these studies the dosage, dosing order and dosing history were changing factors. The experimental work was done with RPA-apparatus with which, the retention process can be followed in real time. In testing was found that silica yielded better retention, when dosed nontraditionally before the polymer. Also silica was very dependant on the polymer dosage. With bentonite good colloidal retention was achieved with relatively low doses. Unlike silica bentonite was not dependant on polymer dosage. The relation of bentonite and polymer dosage is more defining when high retention is wanted. With 3-component systems using bentonite very high retention was achieved. With silica no improvement in retention was found in 3-component systems compared to dual component systems.
Resumo:
Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium.
Resumo:
Synchronous motors are used mainly in large drives, for example in ship propulsion systems and in steel factories' rolling mills because of their high efficiency, high overload capacity and good performance in the field weakening range. This, however, requires an extremely good torque control system. A fast torque response and a torque accuracy are basic requirements for such a drive. For large power, high dynamic performance drives the commonly known principle of field oriented vector control has been used solely hitherto, but nowadays it is not the only way to implement such a drive. A new control method Direct Torque Control (DTC) has also emerged. The performance of such a high quality torque control as DTC in dynamically demanding industrial applications is mainly based on the accurate estimate of the various flux linkages' space vectors. Nowadays industrial motor control systems are real time applications with restricted calculation capacity. At the same time the control system requires a simple, fast calculable and reasonably accurate motor model. In this work a method to handle these problems in a Direct Torque Controlled (DTC) salient pole synchronous motor drive is proposed. A motor model which combines the induction law based "voltage model" and motor inductance parameters based "current model" is presented. The voltage model operates as a main model and is calculated at a very fast sampling rate (for example 40 kHz). The stator flux linkage calculated via integration from the stator voltages is corrected using the stator flux linkage computed from the current model. The current model acts as a supervisor that prevents only the motor stator flux linkage from drifting erroneous during longer time intervals. At very low speeds the role of the current model is emphasised but, nevertheless, the voltage model always stays the main model. At higher speeds the function of the current model correction is to act as a stabiliser of the control system. The current model contains a set of inductance parameters which must be known. The validation of the current model in steady state is not self evident. It depends on the accuracy of the saturated value of the inductances. Parameter measurement of the motor model where the supply inverter is used as a measurement signal generator is presented. This so called identification run can be performed prior to delivery or during drive commissioning. A derivation method for the inductance models used for the representation of the saturation effects is proposed. The performance of the electrically excited synchronous motor supplied with the DTC inverter is proven with experimental results. It is shown that it is possible to obtain a good static accuracy of the DTC's torque controller for an electrically excited synchronous motor. The dynamic response is fast and a new operation point is achieved without oscillation. The operation is stable throughout the speed range. The modelling of the magnetising inductance saturation is essential and cross saturation has to be considered as well. The effect of cross saturation is very significant. A DTC inverter can be used as a measuring equipment and the parameters needed for the motor model can be defined by the inverter itself. The main advantage is that the parameters defined are measured in similar magnetic operation conditions and no disagreement between the parameters will exist. The inductance models generated are adequate to meet the requirements of dynamically demanding drives.
Resumo:
The RPC Detector Control System (RCS) is the main subject of this PhD work. The project, involving the Lappeenranta University of Technology, the Warsaw University and INFN of Naples, is aimed to integrate the different subsystems for the RPC detector and its trigger chain in order to develop a common framework to control and monitoring the different parts. In this project, I have been strongly involved during the last three years on the hardware and software development, construction and commissioning as main responsible and coordinator. The CMS Resistive Plate Chambers (RPC) system consists of 912 double-gap chambers at its start-up in middle of 2008. A continuous control and monitoring of the detector, the trigger and all the ancillary sub-systems (high voltages, low voltages, environmental, gas, and cooling), is required to achieve the operational stability and reliability of a so large and complex detector and trigger system. Role of the RPC Detector Control System is to monitor the detector conditions and performance, control and monitor all subsystems related to RPC and their electronics and store all the information in a dedicated database, called Condition DB. Therefore the RPC DCS system has to assure the safe and correct operation of the sub-detectors during all CMS life time (more than 10 year), detect abnormal and harmful situations and take protective and automatic actions to minimize consequential damages. The analysis of the requirements and project challenges, the architecture design and its development as well as the calibration and commissioning phases represent themain tasks of the work developed for this PhD thesis. Different technologies, middleware and solutions has been studied and adopted in the design and development of the different components and a big challenging consisted in the integration of these different parts each other and in the general CMS control system and data acquisition framework. Therefore, the RCS installation and commissioning phase as well as its performance and the first results, obtained during the last three years CMS cosmic runs, will be
Resumo:
The high sensitivity and excellent timing accuracy of Geiger mode avalanche photodiodes makes them ideal sensors as pixel detectors for particle tracking in high energy physics experiments to be performed in future linear colliders. Nevertheless, it is well known that these sensors suffer from dark counts and afterpulsing noise, which induce false hits (indistinguishable from event detection) as well as an increase of the necessary area of the readout system. In this work, we present a comparison between APDs fabricated in a high voltage 0.35 µm and a high integration 0.13 µm commercially available CMOS technologies that has been performed to determine which of them best fits the particle collider requirements. In addition, a readout circuit that allows low noise operation is introduced. Experimental characterization of the proposed pixel is also presented in this work.