921 resultados para Light Culture and Dark Culture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. This study evaluated the effect of transforming growth factor (TGF)-ß2 and anti-TGF-ß2 antibody in a rodent model of posterior capsule opacification (PCO). METHODS. An extracapsular lens extraction (ECLE) was performed in 72 Sprague-Dawley rats. At the end of the procedure, 10 µL TGF-ß2 (TGF-ß2-treated group), fetal calf serum (FCS)/phosphate- buffered saline (PBS; FCS/PBS-treated control group), a human monoclonal TGF-ß2 antibody (anti-TGF-ß2-treated group), or a null control IgG4 antibody (null antibody-treated control group) was injected into the capsule. Animals were killed 3 and 14 days postoperatively. Eyes were evaluated clinically prior to euthanatization, then enucleated and processed for light microscopy and immunohistochemistry afterward. PCO was evaluated clinically and histopathologically. Student's t-test and ? were used to assess differences between groups. RESULTS. There were no statistically significant clinical or histopathological differences in degree of PCO between the TGF-ß2- and FCS/PBS-treated groups at 3 and 14 days after ECLE. Nor were there differences between the anti-TGF-ß2- and the null antibody-treated groups, with the exception of the histopathology score for capsule wrinkling 3 days after ECLE (P = 0.02). a-Smooth-muscle actin staining was observed in the lens capsular bag only in areas where there was close contact with the iris. CONCLUSIONS. No sustained effect of TGF-ß2 or anti-TGF-ß2 antibody on PCO was found in rodents at the dose and timing administered in this study. Iris cells may play a role in the process of epithelial mesenchymal transition linked to PCO. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By enabling subwavelength light localization and strong electromagnetic field enhancement, plasmonic biosensors have opened up a new realm of possibilities for a broad range of chemical and biological sensing applications owing to their label-free and real-time attributes. Although significant progress has been made, many fundamental and practical challenges still remain to be addressed. For instance, the plasmonic biosensors are nonselective sensing platforms; they are not well-suited to provide information regarding conformation or chemical fingerprint of unknown biomolecules. Furthermore, tunability of the plasmonic resonance in visible frequency regime is still limited; this will prevent their efficient and reproducible exploitation in single-molecule sensitivity. Here, we show that by engineering geometry of plasmonic metamaterials,1 consisting of periodic arrays of artificial split-ring resonators (SRRs), the plasmonic resonance of metamaterials could be tuned to visible-near infrared regimes (Vis-NIR) such that it allows parallel acquisition of optical transmission and highly surface-enhanced Raman (SERS) spectra from large functionalized SRR arrays. The Au SRRs were designed in form of alphabet letters (U, V, S, H, Y) with various line width (from 80 to 30 nm). By tailoring their size and shape, plasmonic resonance wavelength of the SRRs could be actively tuned so that it gives the strongest SERS effect under given excitation energy and polarization for biological and organic molecules. On the other hand, the plasmonic tunability was also achieved for a given SRR pattern by tuning the laser wavelength to obtain the highest electromagnetic field enhancement. The geometry- and laser-tunable channels typically provide an electromagnetic field enhancement as high as 20 times. This will provide the basis of versatile and multichannel devices for identification of different conformational states of Guanine-rich DNA, detection of a cancer biomarker nucleolin, and femtomolar sensitivity detection of food and drink additives. These results show that the tunable Vis-IR metamaterials are very versatile biosensing platforms and suggest considerable promise in genomic research, disease diagnosis, and food safety analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of binding recognition and conformation of biomolecules is of paramount important in understanding of their vital functions in complex biological systems. By enabling sub-wavelength light localization and strong local field enhancement, plasmonic biosensors have become dominant tools used for such analysis owing to their label-free and real-time attributes1,2. However, the plasmonic biosensors are not well-suited to provide information regarding conformation or chemical fingerprint of biomolecules. Here, we show that plasmonic metamaterials, consisting of periodic arrays of artificial split-ring resonators (SRRs)3, can enable capabilities of both sensing and fingerprinting of biomolecules. We demonstrate that by engineering geometry of individual SRRs, localized surface plasmon resonance (LSPR) frequency of the metamaterials could be tuned to visible-near infrared regimes (Vis-NIR) such that they possess high local field enhancement for surface-enhanced Raman scattering spectroscopy (SERS). This will provide the basis for the development of a dual mode label-free conformational-resolving and quantitative detection platform. We present here the ability of each sensing mode to independently detect binding adsorption and to identify different conformational states of Guanine (G)-rich DNA monolayers in different environment milieu. Also shown is the use of the nanosensor for fingerprinting and detection of Arginine-Glycine-Glycine (RGG) peptide binding to the G-quadruplex aptamer. The dual-mode nanosensor will significantly contribute to unraveling the complexes of the conformational dynamics of biomolecules as well as to improving specificity of biodetection assays that the conventional, population-averaged plasmonic biosensors cannot achieve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: There have been few histological or ultrastructural studies of the outer retina and choriocapillaris following panretinal photocoagulation therapy. This investigation examines the long-term morphological effects of panretinal photocoagulation in two patients with type II diabetes who had received laser treatment more than 6 months prior to death.

METHODS: Regions of retina and choroid from each patient were fixed in 2.5% glutaraldehyde, dissected out and examined using light microscopy and scanning and transmission electron microscopy.

RESULTS: After removing the neural retina, scanning electron microscopy of non-photocoagulated areas of the eye cups revealed normal cobblestone-like retinal pigment epithelial (RPE) cells. Regions with laser scars showed little RPE infiltration into the scar area, although large rounded cells often appeared in isolation within these areas. Sections of the retina and choroid in burn regions showed a complete absence of the outer nuclear layer and photoreceptor cells, with the inner retinal layers lying in close apposition to Bruch's membrane. Non-photocoagulated regions of the retina and choroid appeared normal in terms of both cell number and cell distribution. The RPE layer was absent within burn scars but many RPE-like cells appeared markedly hypertrophic at the edges of these regions. Bruch's membrane always remained intact, although the underlying choriocapillaris was clearly disrupted at the point of photocoagulation burns, appearing largely fibrosed and non-perfused. Occasional choroidal capillaries occurring in this region were typically small in profile and had plump non-fenestrated endothelium.

CONCLUSIONS: This study outlines retinal and choroidal cell responses to panretinal photocoagulation in diabetic patients and demonstrates an apparent reduction in the capacity of these tissues to repair laser damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acid-labile dimethaerylate acetal cross-linker,di(methacryloyloxy-l-ethoxy)methane(DMOEM), was synthesized by the reaction of 2-hydroxyethyl methacrylate and paraformaldehyde using p-toluenesulfonic acid and toluene as catalyst and solvent, respectively. Group transfer polymerization was employed to use this cross-linker in the preparation of nine hydrolyzable polymer structures: one neat cross-linker network, one randomly cross-linked network of methyl methacrylate (MMA), and seven star-shaped polymers of MMA. Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions of the linear polymer precursors to the stars and demonstrated the increase in molecular weight upon the addition of cross-linker for the formation of star-shaped polymers. Characterization of the star polymers in THF using static light scattering and GPC showed that the molecular weights and the number of arms of each star polymer increased with an increase in the molar ratio of cross-linker to initiator and with a decrease in the molar ratio of monomer to initiator. The star polymers with DMOEM cores bore a smaller number of arms than those cross-linked with the non-hydrolyzable commercial cross-linker ethylene glycol dimethacrylate due to the bulkier structure of DMOEM. All DMOEM-containing polymer networks and star polymers were completely hydrolyzed within 48 h using hydrochloric acid in THF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate whether pure deflagration models ofChandrasekhar-mass carbon-oxygen white dwarf stars can account for one or more subclass of the observed population of Type Ia supernova (SN Ia) explosions. We compute a set of 3D full-star hydrodynamic explosion models, in which the deflagration strength is parametrized using the multispot ignition approach. For each model, we calculate detailed nucleosynthesis yields in a post-processing step with a 384 nuclide nuclear network. We also compute synthetic observables with our 3D Monte Carlo radiative transfer code for comparison with observations. For weak and intermediate deflagration strengths (energy release E {less-than or approximate} 1.1 × 10 erg), we find that the explosion leaves behind a bound remnant enriched with 3 to 10 per cent (by mass) of deflagration ashes. However, we do not obtain the large kick velocities recently reported in the literature. We find that weak deflagrations with E ~ 0.5 × 10 erg fit well both the light curves and spectra of 2002cx-like SNe Ia, and models with even lower explosion energies could explain some of the fainter members of this subclass. By comparing our synthetic observables with the properties of SNe Ia, we can exclude the brightest, most vigorously ignited models as candidates for any observed class of SN Ia: their B-V colours deviate significantly from both normal and 2002cx-like SNe Ia and they are too bright to be candidates for other subclasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase behavior of two types of poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) copolymers in aqueous solutions was studied by light scattering, viscometry, and infrared spectroscopy. Both the reverse poloxamer (Pluronic 10R5) and the star type poloxamine (Tetronic 90R4) have practically the same PEO/PPO ratio with their hydrophobic blocks (PPO) located in the outer part. The temperature-composition phase diagrams show that both 10R5 and 90R4 tend to form aggregates in water. Up to four different phases can be detected in the case of Tetronic 90R4 for each temperature: unimers, random networks, micellar networks, and macrophase separation. Viscometric and infrared measurements complemented the results obtained by light scattering and visual inspection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of photon interaction and reaction pH can have significant impacts on semiconductor photocatalysis. This paper describes the effect of pH on the photonic efficiency of photocatalytic reactions in the aqueous phase using TiO2 catalysts. The reactor was irradiated using periodic illumination with UV-LEDs through control of the illumination duty cycle (γ) through a series of light and dark times (Ton/Toff). Photonic efficiencies for methyl orange degradation were found to be comparable at high γ irrespective of pH. At lower γ, pH effects on photonic efficiency were very distinct across acidic, neutral and alkaline pH indicating an effect of complementary parameters. The results suggest photonic efficiency is greatest as illumination time, Ton approaches interfacial electron-transfer characteristic time which is within the range of this study or charge-carrier lifetimes upon extrapolation and also when electrostatic attraction between surface-trapped holes, {TiIVOH}ads+ and substrate molecules is strongest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of controlled periodic illumination with UV LEDs for enhancing photonic efficiency of photocatalytic decomposition processes in water has been investigated using methyl orange as a model compound. The impact of the length of light and dark time periods (T ON/T OFF times) on photodegradation and photonic efficiency using a UV LED-illuminated photoreactor has been studied. The results have shown an inverse dependency of the photonic efficiency on duty cycle and a very little effect on T ON or T OFF time periods, indicating no effect of rate-limiting steps through mass diffusion or adsorption/desorption in the reaction. For this reactor, the photonic efficiency under controlled periodic illumination (CPI) matches to that of continuous illumination, for the same average UV light intensities. Furthermore, under CPI conditions, the photonic efficiency is inversely related to the average UV light intensity in the reactor, in the millisecond time regime. This is the first study that has investigated the effect of controlled periodic illumination using ultra band gap UV LED light sources in the photocatalytic destruction of dye compounds using titanium dioxide. The results not only enhance the understanding of the effect of periodic illumination on photocatalytic processes but also provide a greater insight to the potential of these light sources in photocatalytic reactions. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results of a three-year-long dedicated monitoring campaign of a restless luminous blue variable (LBV) in NGC 7259. The object, named SN 2009ip, was observed photometrically and spectroscopically in the optical and near-infrared domains. We monitored a number of erupting episodes in the past few years, and increased the density of our observations during eruptive episodes. In this paper, we present the full historical data set from 2009 to 2012 with multi-wavelength dense coverage of the two high-luminosity events between 2012 August and September. We construct bolometric light curves and measure the total luminosities of these eruptive or explosive events. We label them the 2012a event (lasting ~50 days) with a peak of 3 × 1041 erg s-1, and the 2012b event (14 day rise time, still ongoing) with a peak of 8 × 1042 erg s-1. The latter event reached an absolute R-band magnitude of about -18, comparable to that of a core-collapse supernova (SN). Our historical monitoring has detected high-velocity spectral features (~13,000 km s-1) in 2011 September, one year before the current SN-like event. This implies that the detection of such high-velocity outflows cannot, conclusively, point to a core-collapse SN origin. We suggest that the initial peak in the 2012a event was unlikely to be due to a faint core-collapse SN. We propose that the high intrinsic luminosity of the latest peak, the variability history of SN 2009ip, and the detection of broad spectral lines indicative of high-velocity ejecta are consistent with a pulsational pair-instability event, and that the star may have survived the last outburst. The question of the survival of the LBV progenitor star and its future fate remain open issues, only to be answered with future monitoring of this historically unique explosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral sensitivity of visual pigments in vertebrate eyes is optimized for specific light conditions. One of such pigments, rhodopsin (RH1), mediates dim-light vision. Amino acid replacements at tuning sites may alter spectral sensitivity, providing a mechanism to adapt to ambient light conditions and depth of habitat in fish. Here we present a first investigation of RH1 gene polymorphism among two ecotypes of Atlantic cod in Icelandic waters, which experience divergent light environments throughout the year due to alternative foraging behaviour. We identified one synonymous single nucleotide polymorphism (SNP) in the RH1 protein coding region and one in the 3' untranslated region (3'-UTR) that are strongly divergent between these two ecotypes. Moreover, these polymorphisms coincided with the well-known panthophysin (Pan I) polymorphism that differentiates coastal and frontal (migratory) populations of Atlantic cod. While the RH1 SNPs do not provide direct inference for a specific molecular mechanism, their association with this dim-sensitive pigment indicates the involvement of the visual system in local adaptation of Atlantic cod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Few studies have examined the impact of long-term treatments or exposures on the development of cataract in maturity-onset animal models. We studied the effect of treatment with D-pantethine and exposure to ultraviolet-B (UVB) radiation on the development of lenticular opacity in the Emory mouse. METHODS: A total of 164 Emory mice were randomized by litter at weaning to exposure to UVB light at 12 mJ/cm(2) for 6 hr/day (UV) or usual room light (A), and within litter, were further randomized to bi-weekly intra-peritoneal injections of 0.8 g/kg pantethine (T) or no treatment (C). Retro illumination lens photos were taken at 2, 4, 6, 8, and 10 months after weaning, and graded in masked fashion. The animals were sacrificed at 10 months and the lenses analyzed for total pantethine and total cysteamine. RESULTS: Lens pantethine and cysteamine levels were significantly (P < 0.001) higher for the T as compared to C litters. Mean cataract grade increased monotonically over time for all four groups. Unadjusted mean grade for the AT group at 8 (1.32) and 10 (1.86) months appeared lower than for the other groups (AC: 2.17, 2.39; UVC: 1.77, 2.40; UVT: 1.88, 2.37). However, the mean grade for the pantethine-treated litters did not differ significantly from the untreated litters except at 2 months (when untreated litters had significantly lower grades), when adjusting for UV treatment, gender and litter effect. No significant difference in cataract score existed between UV-exposed and ambient litters. Mortality was higher among pantethine-treated (hazard ratio = 1.8, p = 0.05) and UV-exposed animals (hazard ratio = 1.8, p = 0. 03) than among the untreated and unexposed litters. CONCLUSION: Significantly increased lens levels of pantethine are achieved with long-term intra-peritoneal dosing. The impact of pantethine on the progression of lenticular opacity in the Emory mouse is less than has been reported in other models. This level of chronic UVB exposure appeared to have no effect on the development of cataract in this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A importância médica do sangue associada ao risco de doenças infeciosas levou a um melhoramento das técnicas de rastreio de patogénicos no sangue doado. No entanto, devido aos períodos de "janela", durante o qual os agentes infeciosos não podem ser detetados, a desinfeção de sangue e seus derivados assume uma importância vital. Considerando que as técnicas convencionais de desinfeção (tratamento com solvente-detergente ou irradiação com UV ou radiação gama) pode ser empregue em concentrados de plasma ou de proteínas, o efeito colateral associado aos respetivos tratamentos não permite a sua utilização em frações celulares. Consequentemente, é necessário o desenvolvimento de uma nova alternativa eficaz para inativar microrganismos em sangue. Uma boa estratégia que merece ser considerada baseia-se na terapia fotodinâmica antimicrobiana (aPDT). aPDT envolve a interação entre a luz e um fotossensibilizador (PS) na presença de oxigénio molecular. Esta interação produz espécies reativas de oxigénio (ROS), que causam danos oxidativos às moléculas microbianas necessárias à sobrevivência do microrganismo. Em alguns países, esta metodologia já está aprovada para descontaminação de plasma, utilizando azul de metileno ou psoraleno como PSs. O objetivo deste estudo foi avaliar a adequação de de estrutura do tipo ftalocianina (Pc) e porfirina (Por) para desinfeção fotodinâmica de hemoderivados. Plasma e sangue total foram infetados com 108 unidades formadoras de colónias (CFU) / mL de Escherichia coli e após incubação com os derivados Pc e Por em estudo, expostos respetivamente a luz vermelha ou a luz branca com uma irradiância de 150 W/m2durante 270 min. As concentrações de E. coli viáveis foram determinadas a 0, 30, 60, 90, 180 e 270 min e comparadas com as obtidas nos controlos claro (amostras irradiadas na ausência de PS) e controlos escuro (amostras incubadas com PS mas não irradiadas). O efeito do tratamento aPDT nas células do sangue (glóbulos vermelhos e brancos) também foi avaliado. Os resultados obtidos mostram que, em todos os componentes do sangue, a Por em estudo é mais eficaz na inativação de E. coli que o derivado Pc. Após o tratamento aPDT, o número de células vermelhas e brancas no sangue é semelhante aos valores observados nas amostras de controlo. A eficiente inativação de células de E. coli e a ausência de efeito sobre as células de sangue transformam os derivados porfirínicos e ftalocianinas potenciais candidatos a serem utilizados com fotossensibilizadores na desinfeção fotodinâmica de produtos derivados do sangue.