973 resultados para Lewis Spring
Resumo:
We present an overview of our analyses of HiRISE observations of spring evolution of selected dune areas of the north polar erg. The north polar erg is covered annually by seasonal volatile ice layer, a mixture of CO2 and H2O with mineral dust contamination. In spring, this layer sublimes creating visually enigmatic phenomena, e.g. dark and bright fan-shaped deposits, darkbrightdark bandings, dark down-slope streaks, and seasonal polygonal cracks. Similar phenomena in southern polar areas are believed to be related to the specific process of solid-state greenhouse effect. In the north, it is currently unclear if the solid-state greenhouse effect is able to explain all the observed phenomena especially because the increased influence of H2O on the time scales of this process has not yet been quantified. HiRISE observations of our selected locations show that the ground exhibits a temporal behaviour similar to the one observed in the southern polar areas: a brightening phase starting close to the spring equinox with a subsequent darkening towards summer solstice. The resolution of HiRISE enabled us to study dunes and substrate individually and even distinguish between different developments on windward and slip face sides of single dunes. Differences in the seasonal evolution between steep slip faces and flatter substrate and windward sides of dunes have been identified and compared to CRISM data of CO2 and H2O distributions on dunes. We also observe small scale dark blotches that appear in early observations and tend to sustain a low reflectivity throughout the spring. These blotches can be regarded as the analogue of dark fan deposits in southern polar areas, leading us to the conclusion that both martian polar areas follow similar spring evolutions.
Resumo:
We analyze a series of targeted CRISM and HiRISE observations of seven regions of interest at high latitudes in the Northern polar regions of Mars. These data allow us to investigate the temporal evolution of the composition of the seasonal ice cap during spring, with a special emphasis on peculiar phenomena occurring in the dune fields and in the vicinity of the scarps of the North Polar Layered Deposits (NPLDs). The strength of the spectral signature of CO2 ice continuously decreases during spring whereas the one of H2O ice first shows a strong increase until Ls = 50. This evolution is consistent with a scenario previously established from analysis of OMEGA data, in which a thin layer of pure H2O ice progressively develops at the surface of the volatile layer. During early spring (Ls < 10), widespread jet activity is observed by HiRISE while strong spectral signatures of CO2 ice are detected by CRISM. Later, around Ls = 20-40, activity concentrates at the dune fields where CRISM also detects a spectral enrichment in CO2 ice, consistent with "Kieffer's model" (Kieffer, H.H. [2007]. J. Geophys. Res. 112, E08005. doi:10.1029/2006JE002816) for jet activity. Effects of wind are prominent across the dune fields and seem to strongly influence the sublimation of the volatile layer. Strong winds blowing down the scarps could also be responsible for the significant spatial and temporal variability of the surface ice composition observed close to the NPLD.
Resumo:
This study evaluated the use of electroshock as in alternative to traditional techniques for immobilizing and euthanizing hatchery fish. We used a commercially available electroanesthesia unit at the U.S. Fish and Wildlife Service's Carson National Fish Hatchery (Carson, Washington) to euthanize adult spring Chinook salmon Oncorhynchus tshawytscha and to son and collect gametes of fish at maturation. During euthanization by electroshock, the response of each fish was observed, Muscular and vertebral hemorrhaging wits quantified, and electrical settings were optimized accordingly. During gamete collection, fish were either electroshocked or exposed to tricaine methanesulfortate (MS-222); hemorrhaging, egg viability. egg size and quantity, and resultant fry quality were examined for each treatment group. Electroshocked fish had a higher likelihood Of injury during gamete collection than did fish exposed to MS-222. On average, each electroshocked fish had less than two hemorrhages oil both fillets examined. The size of each hemorrhage was less than 0.10% of the fillet surface. Fecundity and egg and fry quality were not affected by either immobilization method. Electroshock was a viable and efficient means of euthanizing adult spring Chinook salmon or sorting the fish and collecting their gametes. However, equipment settings must be optimized based on site-specific (e.g., water conductivity) and species-specific (e.g., fish size and seasonal state of maturation) factors.
Resumo:
The North Atlantic spring bloom is one of the main events that lead to carbon export to the deep ocean and drive oceanic uptake of CO(2) from the atmosphere. Here we use a suite of physical, bio-optical and chemical measurements made during the 2008 spring bloom to optimize and compare three different models of biological carbon export. The observations are from a Lagrangian float that operated south of Iceland from early April to late June, and were calibrated with ship-based measurements. The simplest model is representative of typical NPZD models used for the North Atlantic, while the most complex model explicitly includes diatoms and the formation of fast sinking diatom aggregates and cysts under silicate limitation. We carried out a variational optimization and error analysis for the biological parameters of all three models, and compared their ability to replicate the observations. The observations were sufficient to constrain most phytoplankton-related model parameters to accuracies of better than 15 %. However, the lack of zooplankton observations leads to large uncertainties in model parameters for grazing. The simulated vertical carbon flux at 100 m depth is similar between models and agrees well with available observations, but at 600 m the simulated flux is larger by a factor of 2.5 to 4.5 for the model with diatom aggregation. While none of the models can be formally rejected based on their misfit with the available observations, the model that includes export by diatom aggregation has a statistically significant better fit to the observations and more accurately represents the mechanisms and timing of carbon export based on observations not included in the optimization. Thus models that accurately simulate the upper 100 m do not necessarily accurately simulate export to deeper depths.
Resumo:
Extending phenological records into the past is essential for the understanding of past ecological change and evaluating the effects of climate change on ecosystems. A growing body of historical phenological information is now available for Europe, North America, and Asia. In East Asia, long-term phenological series are still relatively scarce. This study extracted plant phenological observations from old diaries in the period 18341962. A spring phenology index (SPI) for the modern period (19632009) was defined as the mean flowering time of three shrubs (first flowering of Amygdalus davidiana and Cercis chinensis, 50% of full flowering of Paeonia suffruticosa) according to the data availability. Applying calibrated transfer functions from the modern period to the historical data, we reconstructed a continuous SPI time series across eastern China from 1834 to 2009. In the recent 30years, the SPI is 2.16.3days earlier than during any other consecutive 30year period before 1970. A moving linear trend analysis shows that the advancing trend of SPI over the past three decades reaches upward of 4.1d/decade, which exceeds all previously observed trends in the past 30year period. In addition, the SPI series correlates significantly with spring (February to April) temperatures in the study area, with an increase in spring temperature of 1C inducing an earlier SPI by 3.1days. These shifts of SPI provide important information regarding regional vegetation-climate relationships, and they are helpful to assess long term of climate change impacts on biophysical systems and biodiversity.
Resumo:
Varved lake sediments are excellent natural archives providing quantitative insights into climatic and environmental changes at very high resolution and chronological accuracy. However, due to the multitude of responses within lake ecosystems it is often difficult to understand how climate variability interacts with other environmental pressures such as eutrophication, and to attribute observed changes to specific causes. This is particularly challenging during the past 100 years when multiple strong trends are superposed. Here we present a high-resolution multi-proxy record of sedimentary pigments and other biogeochemical data from the varved sediments of Lake abiskie (Masurian Lake District, north-eastern Poland, 54N22E, 120 m a.s.l.) spanning AD 1907 to 2008. Lake abiskie exhibits biogeochemical varves with highly organic late summer and winter layers separated by white layers of endogenous calcite precipitated in early summer. The aim of our study is to investigate whether climate-driven changes and anthropogenic changes can be separated in a multi-proxy sediment data set, and to explore which sediment proxies are potentially suitable for long quantitative climate reconstructions. We also test if convoluted analytical techniques (e.g. HPLC) can be substituted by rapid scanning techniques (visible reflectance spectroscopy VIS-RS; 380730 nm). We used principal component analysis and cluster analysis to show that the recent eutrophication of Lake abiskie can be discriminated from climate-driven changes for the period AD 19072008. The eutrophication signal (PC1 = 46.4%; TOC, TN, TS, Phe-b, high TC/CD ratios total carotenoids/chlorophyll-a derivatives) is mainly expressed as increasing aquatic primary production, increasing hypolimnetic anoxia and a change in the algal community from green algae to blue-green algae. The proxies diagnostic for eutrophication show a smooth positive trend between 1907 and ca 1980 followed by a very rapid increase from ca. 1980 2 onwards. We demonstrate that PC2 (24.4%, Chl-a-related pigments) is not affected by the eutrophication signal, but instead is sensitive to spring (MAM) temperature (r = 0.63, pcorr < 0.05, RMSEP = 0.56 C; 5-yr filtered). Limnological monitoring data (20112013) support this finding. We also demonstrate that scanning visible reflectance spectroscopy (VIS-RS) data can be calibrated to HPLC-measured chloropigment data and be used to infer concentrations of sedimentary Chl-a derivatives {pheophytin a + pyropheophytin a}. This offers the possibility for very high-resolution (multi)millennial-long paleoenvironmental reconstructions.
Resumo:
This paper presents a unique 517-yr long documentary data-based reconstruction of spring-summer (MAMJJ) temperatures for northern Switzerland and southwestern Germany from 1454 to 1970. It is composed of 25 partial series of winter grain (secale cereale) harvest starting dates (WGHD) that are partly based on harvest related bookkeeping of institutions (hospitals, municipalities), partly on (early) phenological observations. The resulting main Basel WGHD series was homogenised with regard to dating style, data type and altitude. The calibration and verification approach was applied using the homogenous HISTALP temperature series from 17741824 for calibration (r = 0.78) and from 19201970 for verification (r = 0.75). The latter result even suffers from the weak data base available for 1870 1950. Temperature reconstructions based on WGHD are more influenced by spring temperatures than those based on grape harvest dates (GHD), because rye in contrast to vines already begins to grow as soon as sunlight brings the plant to above freezing. The earliest and latest harvest dates were checked for consistency with narrative documentary weather reports. Comparisons with other European documentarybased GHD and WGHD temperature reconstructions generally reveal significant correlations decreasing with the distance from Switzerland. The new Basel WGHD series shows better skills in representing highly climate change sensitive variations of Swiss Alpine glaciers than available GHD series.
Resumo:
Existing evidence of plant phenological change to temperature increase demonstrates that the phenological responsiveness is greater at warmer locations and in early-season plant species. Explanations of these findings are scarce and not settled. Some studies suggest considering phenology as one functional trait within a plant's life history strategy. In this study, we adapt an existing phenological model to derive a generalized sensitivity in space (SpaceSens) model for calculating temperature sensitivity of spring plant phenophases across species and locations. The SpaceSens model have three parameters, including the temperature at the onset date of phenophases (Tp), base temperature threshold (Tb) and the length of period (L) used to calculate the mean temperature when performing regression analysis between phenology and temperature. A case study on first leaf date of 20 plant species from eastern China shows that the change of Tp and Tb among different species accounts for interspecific difference in temperature sensitivity. Moreover, lower Tp at lower latitude is the main reason why spring phenological responsiveness is greater there. These results suggest that spring phenophases of more responsive, early-season plants (especially in low latitude) will probably continue to diverge from the other late-season plants with temperatures warming in the future.