930 resultados para Leishmania mexicana
Resumo:
Background and Objective Cutaneous and mucocutaneous leishmaniasis are diseases characterized by skin or mucosal manifestations. In the new world, Leishmania braziliensis is the main etiological agent of cutaneous leishmaniasis, condition that may evolve to the mucocutaneous form. The therapeutic arsenal routinely employed to treat infected patients is unsatisfactory, especially for pentavalent antimonials, treatment recommended by the WHO, as they are often highly toxic, poorly tolerated and of variable effectiveness. This work aimed to evaluate in vitro the effectiveness of photodynamic antimicrobial chemotherapy as a new approach for the treatment of leishmaniasis. Materials and Methods A laser (??=?660?nm, 40?mW, 4.2?J/cm2, and 8.4?J/cm2, CW) associated to phenothiazine's derivatives (5 and 10?mu g/ml, toluidine blue O, methylene blue, or phenothiazine) on the promastigote forms of L. braziliensis in a single session. Samples were removed and analyzed in a hemocytometer 72?hours after PACT and viability of the parasites was assessed in quadruplicates. Results An important decrease in the number of viable parasites on all treated groups in comparison to their controls was observed as all tested compounds lead to significant parasite lethality being the highest lethality achieved with 10?mu g/ml of TBO. No lethality was observed on groups treated with laser or with any of the compounds separately. Conclusions TBO presented higher parasite lethality in comparison to MB with impressive reduction from 1?hour to 5?minutes of pre-incubation time. Lasers Surg. Med. 44: 850855, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories -the cheapest way of producing DNA-PROT vaccines-is a practical and cost-effective way for potential "off the shelf" supplying vaccines at very low prices for the protection against leishmaniases, and possibly against other parasitic diseases affecting the poorest of the poor.
Resumo:
Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and has been exploited as the target for therapy against proliferative and parasitic diseases. In this study, we report the crystal structures of DHODH from Leishmania major, the species of Leishmania associated with zoonotic cutaneous leishmaniasis, in its apo form and in complex with orotate and fumarate molecules. Both orotate and fumarate were found to bind to the same active site and exploit similar interactions, consistent with a ping-pong mechanism described for class 1A DHODHs. Analysis of LmDHODH structures reveals that rearrangements in the conformation of the catalytic loop have direct influence on the dimeric interface. This is the first structural evidence of a relationship between the dimeric form and the catalytic mechanism. According to our analysis, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to validate DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping sickness and Chagas' diseases. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Abstract Background Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (EC 2.4.2.8) is a central enzyme in the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida cannot synthesize purines de novo and use the salvage pathway to synthesize purine bases, making this an attractive target for antiparasitic drug design. Results The glycosomal HGPRT from Leishmania tarentolae in a catalytically active form purified and co-crystallized with a guanosine monophosphate (GMP) in the active site. The dimeric structure of HGPRT has been solved by molecular replacement and refined against data extending to 2.1 Å resolution. The structure reveals the contacts of the active site residues with GMP. Conclusion Comparative analysis of the active sites of Leishmania and human HGPRT revealed subtle differences in the position of the ligand and its interaction with the active site residues, which could be responsible for the different reactivities of the enzymes to allopurinol reported in the literature. The solution and analysis of the structure of Leishmania HGPRT may contribute to further investigations leading to a full understanding of this important enzyme family in protozoan parasites.
Resumo:
Abstract Background Leishmania (Leishmania) amazonensis infection in man results in a clinical spectrum of disease manifestations ranging from cutaneous to mucosal or visceral involvement. In the present study, we have investigated the genetic variability of 18 L. amazonensis strains isolated in northeastern Brazil from patients with different clinical manifestations of leishmaniasis. Parasite DNA was analyzed by sequencing of the ITS flanking the 5.8 S subunit of the ribosomal RNA genes, by RAPD and SSR-PCR and by PFGE followed by hybridization with gene-specific probes. Results ITS sequencing and PCR-based methods revealed genetic heterogeneity among the L. amazonensis isolates examined and molecular karyotyping also showed variation in the chromosome size of different isolates. Unrooted genetic trees separated strains into different groups. Conclusion These results indicate that L. amazonensis strains isolated from leishmaniasis patients from northeastern Brazil are genetically diverse, however, no correlation between genetic polymorphism and phenotype were found.
Resumo:
Abstract Background Leishmania parasites are transmitted to their vertebrate hosts by infected Phlebotomine sand flies during the blood meal of the flies. Sand fly saliva is known to enhance Leishmania spp. infection, while pre-exposure to saliva protects mice against parasitic infections. In this study, we investigated the initial inflammatory leucocyte composition induced by one or three inocula of salivary gland extract (SGE) from Lutzomyia longipalpis in the presence or absence of Leishmania braziliensis. Results We demonstrated that inoculating SGE once (SGE-1X) or three times (SGE-3X), which represented a co-inoculation or a pre-exposure to saliva, respectively, resulted in different cellular infiltrate profiles. Whereas SGE-1X led to the recruitment of all leucocytes subtypes including CD4+ T cells, CD4+CD25+ T cells, dendritic cells, macrophages and neutrophils, the immune cell profile in the SGE-3X group differed dramatically, as CD4+ T cells, CD4+CD25+ T cells, dendritic cells, macrophages and neutrophils were decreased and CD8+ T cells were increased. The SGE-1X group did not show differences in the ear lesion size; however, the SGE-1X group harbored a higher number of parasites. On the other hand, the SGE-3X group demonstrated a protective effect against parasitic disease, as the parasite burden was lower even in the earlier stages of the infection, a period in which the SGE-1X group presented with larger and more severe lesions. These effects were also reflected in the cytokine profiles of both groups. Whereas the SGE-1X group presented with a substantial increase in IL-10 production, the SGE-3X group showed an increase in IFN-γ production in the draining lymph nodes. Analysis of the inflammatory cell populations present within the ear lesions, the SGE-1X group showed an increase in CD4+FOXP3+ cells, whereas the CD4+FOXP3+ population was reduced in the SGE-3X group. Moreover, CD4+ T cells and CD8+ T cells producing IFN-γ were highly detected in the ears of the SGE-3X mice prior to infection. In addition, upon treatment of SGE-3X mice with anti-IFN-γ monoclonal antibody, we observed a decrease in the protective effect of SGE-3X against L. braziliensis infection. Conclusions These results indicate that different inocula of Lutzomyia longipalpis salivary gland extract can markedly modify the cellular immune response, which is reflected in the pattern of susceptibility or resistance to Leishmania braziliensis infection.
Resumo:
Trypanosomatidae is a family of early branching eukaryotes harbouring a distinctive repertoire of gene expression strategies. Functional mature messenger RNA is generated via the trans-splicing and polyadenylation processing of constitutively transcribed polycistronic units. Recently, trans-splicing of pre-small subunit ribosomal RNA in the 5' external transcribed spacer region and of precursor tRNAsec have been described. Here, we used a previously validated semi-nested reverse transcription-polymerase chain reaction strategy to investigate internal transcribed spacer (ITS) I acceptor sites in total RNA from Leishmania (Leishmania) amazonensis. Two distinct spliced leader-containing RNAs were detected indicating that trans-splicing reactions occur at two AG acceptor sites mapped in this ITS region. These data provide further evidence of the wide spectrum of RNA molecules that act as trans-splicing acceptors in trypanosomatids.
Resumo:
The increased incidence of visceral leishmaniasis (VL) in Brazil is due to a lack of effective disease control measures. In addition to that, no effective treatment exists for canine VL in response to synthetic drugs. Thus, the objective of this study was to evaluate the effect of the essential oils of Coriandrum sativum and Lippia sidoides, and oleoresin from Copaifera reticulata, on Leishmania chagasi promastigotes and amastigotes. We also examined the toxicity of these treatments on the murine monocyte cell line RAW 264.7. To determine the IC50 a MTT test (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed on promastigotes, and an in situ ELISA assay was conducted on amastigotes. Here, we demonstrate that oleoresin from C. reticulata was effective against both promastigotes (IC50 of 7.88 µg.mL-1) and amastigotes (IC50 of 0.52 µg.mL-1), and neither of the two treatments differed significantly (p > 0.05) from pentamidine (IC50 of 2.149 µg.mL-1) and amphotericin B (IC50 of 9.754 µg.mL-1). Of the three plant oils tested, only oleoresin showed no toxicity toward monocyte, with 78.45% viability after treatment. Inhibition of promastigote and amastigote growth and the lack of cytotoxicity by C. reticulata demonstrate that oleoresin may be a viable option for analyzing the in vivo therapeutic effects of leishmanicidal plants
Resumo:
IgG avidity tests are used to discriminate acute from chronic infections. There are few reports on the IgG avidity profile of patients with visceral leishmaniasis (VL). This study investigated the anti-Leishmania IgG avidity in patients with classic VL (n = 10), patients showing clinical cure after treatment (n = 18), and asymptomatic subjects with at least one positive Leishmania test (n = 20). All subjects were from areas in Brazil where VL is endemic. Serum samples were collected from each subject on two different occasions. IgG avidity was evaluated by Western blotting. The proportion of high-avidity antibodies was higher in all samples from patients with classic VL. In contrast, low-avidity antibodies predominated in subjects with a history of VL, including 13 cases (72.2%) in the first assessment and 14 (77.8%) in the second. Fifteen (75%) of the asymptomatic subjects presented a predominance of low-avidity antibodies in the first assessment, and the frequency of high-avidity antibodies increased over time in seven subjects (35%) of this group. Antibodies against the 14- and/or 16-kDa antigen fraction were detected in the first assessment in all patients with classic VL, in 10 (55.5%) treated patients, and in 10 (50%) asymptomatic subjects. These were high-avidity antibodies in most cases. In the asymptomatic group, an increase in IgG avidity against the 14- and/or 16-kDa antigen fraction was observed in three cases (15%). The results indicate distinct responses in infected and asymptomatic subjects, probably associated with the length of time after infection. In this respect, IgG avidity tests represent a new approach to better characterize asymptomatic VL.
Resumo:
The aim of this study was to compare the techniques of indirect immunofluorescence assay (IFA) and flow cytometry to clinical and laboratorial evaluation of patients before and after clinical cure and to evaluate the applicability of flow cytometry in post-therapeutic monitoring of patients with American tegumentary leishmaniasis (ATL). Sera from 14 patients before treatment (BT), 13 patients 1 year after treatment (AT), 10 patients 2 and 5 years AT were evaluated. The results from flow cytometry were expressed as levels of IgG reactivity, based on the percentage of positive fluorescent parasites (PPFP). The 1:256 sample dilution allowed us to differentiate individuals BT and AT. Comparative analysis of IFA and flow cytometry by ROC (receiver operating characteristic curve) showed, respectively, AUC (area under curve) = 0.8 (95% CI = 0.64–0.89) and AUC = 0.90 (95% CI = 0.75–0.95), demonstrating that the flow cytometry had equivalent accuracy. Our data demonstrated that 20% was the best cut-off point identified by the ROC curve for the flow cytometry assay. This test showed a sensitivity of 86% and specificity of 77% while the IFA had a sensitivity of 78% and specificity of 85%. The after-treatment screening, through comparative analysis of the technique performance indexes, 1, 2 and 5 years AT, showed an equal performance of the flow cytometry compared with the IFA. However, flow cytometry shows to be a better diagnostic alternative when applied to the study of ATL in the cure criterion. The information obtained in this work opens perspectives to monitor cure after treatment of ATL.
Resumo:
Selenophosphate synthetase (SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the activation of selenide with adenosine 5'-triphosphate (ATP) to generate selenophosphate, the essential selenium donor for selenocysteine synthesis. Recombinant full-length Leishmania major SPS (LmSPS2) was recalcitrant to crystallization. Therefore, a limited proteolysis technique was used and a stable N-terminal truncated construct (ΔN-LmSPS2) yielded suitable crystals. The Trypanosoma brucei SPS orthologue (TbSPS2) was crystallized by the microbatch method using paraffin oil. X-ray diffraction data were collected to resolutions of 1.9 Å for ΔN-LmSPS2 and 3.4 Å for TbSPS2.
Resumo:
This thesis focuses on the role of B cells in mCMV and Leishmania major infection. B cells are an essential component of the adaptive immune system and play a key role in the humoral immune response. In mCMV infection we analyzed the influence of B cells on the virus-specific CD8 T cell response, in detail the role of B cells as IL-10 secreting cells, as source of immunoglobulin (Ig) and as antigen presenting cells. In Leishmania major infection we investigated the role of Ig in Th1 and Th2 directed disease.rnWe found in mCMV infection that the B cell secreted IL-10 suppresses effectively the acute virus-specific CD8 T cell response, while the IL-10 secreted by dendritic cell has no obvious effect. Ig has no effect in the acute virus-specific CD8 T cell response, but in memory response Ig is essential. If Ig is missing the CD8 T cell population remains high in memory response 135 days post infection. The complete absence of B cells dramatically reduces the acute virus-specific CD8 T cell response, while B cell reconstitution just partially rescues this dramatic reduction. A comparison of this reduction in a B cell free organism to an organism with depleted dendritic cells gave a similar result. To exclude a malfunction of the CD8 T cells in the B cell deficient mice, the decreased virus-specific CD8 T cell population was confirmed in a B cell depletion model. Further, bone marrow chimeras with a B cell compartment deficient for CD40-/- showed a decrease of the virus-specific response and an involvement of CD40 on B cells. Taken together these results suggest a role for B cells in antigen presentation during mCMV infection.rnFurther we took advantage of the altered mCMV specific CD8 T cell memory response in mice without Ig to investigate the memory inflation of CD8 T cells specific for distinct mCMV specifc peptides. Using a SIINFEKL-presenting virus system, we were able to shorten the time until the memory inflation occurs and show that direct presentation stimulates the memory inflation. rnIn Leishmania major infection, Ig of Th2 balanced BALB/c mice has a central role in preventing a systemic infection, although the ear lesions are smaller in IgMi mice without specific Ig. Here the parasite loads of ears and spleen are elevated, and an IMS-reconstitution does not affect the parasite load. In contrast in Th1 balanced C57BL/6 mice, reconstitution of IgMi mice with serum of either untreated or immunized mice decreased the parasite load of spleen and ear, further IMS treatment reduces the size of the spleen and the cytokine-levels of IL-10, IL-4, IL-2 and IFN-γ to a level comparable to wt mice. rn
Resumo:
First both life stages of Leishmania major (L. major) FEBNI parasites, promastigotes as well as amastigotes, were characterized. We found that the virulence marker GP63 and cysteine peptidase b (Cpb) were higher expressed by axenic amastigotes as compared to promastigotes. In addition to the L. major FEBNI strain, we applied and successfully modified our novel in vitro method to generate axenic amastigotes of the L. major Friedlin and 5ASKH strains. Interestingly, these L. major strains needed another temperature to be transferred into amastigotes in the axenic culture system. Investigating apoptosis mechanisms in both parasite life stages of L. major FEBNI we found both ROS dependent and independent cell death mechanisms. Focusing on promastigote and amastigote interaction with pro-inflammatory (MF I) and anti-inflammatory (MF II) macrophages we found amastigotes to be more infective as compared to promastigotes. Moreover, we could demonstrate that pro-inflammatory MF I were less susceptible to infection than anti-inflammatory MF II. Finally we investigated parasite stage-specific responses of MF I + II and their defense mechanisms against L. major. Using knockdown techniques for primary human macrophages we identified a new mechanism enabling intracellular killing of promastigotes inside MF I. This mechanism depends on the antimicrobial molecule cathelicidin (LL-37).
Resumo:
In this thesis, we investigated the interaction of the obligate intracellular parasite Leishmania (L.) major with two phenotypes of human monocyte derived macrophages (hMDMs). Thereby we focused on the development and maturation of the parasitophorous vacuole (PV) and could show that compartment development is dependent on the parasite stage.rnFocusing on the ultrastructure of PVs containing axenic amastigotes, we demonstrated that the parasites are partially located in damaged PVs or in the cytoplasm of the host. Moreover, we visualized multiple amastigotes in a common PV 144 h p.i. in pro-inflammatory hMDM I but not in anti-inflammatory hMDM II indicating different PV development. rnRegarding the promastigote form, we demonstrated a different uptake of viable and apoptotic L. major promastigotes by hMDMs. Viable promastigotes are predominantly taken up via the flagellum tip whereas apoptotic promastigotes enter the cells via the parasite body. Analyzing compartment maturation, we found that 20-30% of the PVs get positive for the early maturation markers PI3P and EEA1 independent of the viability of the parasites and unaffected by the human macrophage type. Subsequently, 25-40% of the parasites acquire the autophagy marker LC3 on their PV, what is independent of the viability of the parasites as well. We quantified this and in hMDM II less LC3-positive compartments formed compared to hMDM I. Analyzing the ultrastructure, we investigated that the compartments consist of a single-membrane PV characteristic for LC3-associated phagocytosis (LAP). Involvement of LAP was confirmed by demonstrating that the protein kinase ULK1 is dispensable for LC3-compartment formation around Leishmania PVs. Visualizing compartment dynamics in real time showed that apoptotic promastigotes are degraded in LC3-positve compartments, whereas viable promastigotes are able to get rid of LC3-protein on their PV suggesting an involvement in parasite development and survival. In this thesis, we established a lentiviral based fluorescent imaging technique that we combined with High-Pressure-Freezing (HPF) and high-resolution 3D electron microscopy. We visualized a promastigote in a LC3-compartment whose ultrastructure showed an opening of the PV to the outside. To identify new LAP markers involved in Leishmania infection, we established an immuno-magnetic isolation protocol for the purification of Leishmania containing compartments.rnIn conclusion, this study suggests that L. major compartment biogenesis and maturation in pro- and anti-inflammatory human macrophages is dependent on the parasite stage and is different between axenic amastigotes, viable promastigotes and apoptotic promastigotes. Understanding the development and maturation of Leishmania parasites in human host cells is important to control and combat the neglected disease leishmaniasis in the future.rn
Resumo:
In der vorliegenden Arbeit fokussierten wir uns auf drei verschiedene Aspekte der Leishmanien-Infektion. Wir charakterisierten den Prozess des Zelltods „Apoptose“ bei Parasiten (1), untersuchten die Eignung von Makrophagen und dendritischen Zellen als Wirtszelle für die Entwicklung der Parasiten (2) und analysierten die Konsequenzen der Infektion für die Entstehung einer adaptiven Immunantwort im humanen System. Von zentraler Bedeutung für dieses Projekt war die Hypothese, dass apoptotische Leishmanien den Autophagie-Mechanismus ihrer Wirtszellen ausnutzen, um eine T-Zell-vermittelte Abtötung der Parasiten zu vermindern.rnWir definierten eine apoptotische Leishmanien-Population, welche durch eine rundliche Morphologie und die Expression von Phosphatidylserin auf der Parasitenoberfläche charakterisiert war. Die apoptotischen Parasiten befanden sich zudem in der SubG1-Phase und wiesen weniger und fragmentierte DNA auf, welche durch TUNEL-Assay nachgewiesen werden konnte. Bei der Interaktion der Parasiten mit humanen Makrophagen und dendritischen Zellen zeigte sich, dass die anti-inflammatorischen Makrophagen anfälliger für Infektionen waren als die pro-inflammatorischen Makrophagen oder die dendritischen Zellen. Interessanterweise wurde in den dendritischen Zellen jedoch die effektivste Umwandlung zur krankheitsauslösenden, amastigoten Lebensform beobachtet. Da sowohl Makrophagen als auch dendritische Zellen zu den antigenpräsentierenden Zellen gehören, könnte dies zur Aktivierung der T-Zellen des adaptiven Immunsystems führen. Tatsächlich konnte während der Leishmanien-Infektion die Proliferation von T-Zellen beobachtet werden. Dabei stellten wir fest, dass es sich bei den proliferierenden T-Zellen um CD3+CD4+ T-Zellen handelte, welche sich überraschenderweise als Leishmanien-spezifische CD45RO+ T-Gedächtniszellen herausstellten. Dies war unerwartet, da ein vorheriger Kontakt der Spender mit Leishmanien als unwahrscheinlich gilt. In Gegenwart von apoptotischen Parasiten konnte eine signifikant schwächere T-Zell-Proliferation in Makrophagen, jedoch nicht in dendritischen Zellen beobachtet werden. Da sich die T-Zell-Proliferation negativ auf das Überleben der Parasiten auswirkt, konnten die niedrigsten Überlebensraten in dendritischen Zellen vorgefunden werden. Innerhalb der Zellen befanden sich die Parasiten in beiden Zelltypen im Phagosom, welches allerdings nur in Makrophagen den Autophagie-Marker LC3 aufwies. Chemische Induktion von Autophagie führte, ebenso wie die Anwesenheit von apoptotischen Parasiten, zu einer stark reduzierten T-Zell-Proliferation und dementsprechend zu einem höheren Überleben der Parasiten.rnZusammenfassend lässt sich aus unseren Daten schließen, dass Apoptose in Einzellern vorkommt. Während der Infektion können sowohl Makrophagen, als auch dendritische Zellen mit Leishmanien infiziert und das adaptive Immunsystem aktivert werden. Die eingeleitete T-Zell-Proliferation nach Infektion von Makrophagen ist in Gegenwart von apoptotischen Parasiten reduziert, weshalb sie im Vergleich zu dendritischen Zellen die geeigneteren Wirtszellen für Leishmanien darstellen. Dafür missbrauchen die Parasiten den Autophagie-Mechanismus der Makrophagen als Fluchtstrategie um das adaptive Immunsystem zu umgehen und somit das Überleben der Gesamtpopulation zu sichern. Diese Ergebnisse erklären den Vorteil von Apoptose in Einzellern und verdeutlichen, dass der Autophagie-Mechanismus als potentielles therapeutisches Ziel für die Behandlung von Leishmaniose dienen kann.rn