993 resultados para Lateral torsional buckling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most fibers are irregular, and they are often subjected to combined loading conditions during processing and end-use. In this paper, polyester and wool fibers under the combined tensile and torsional loads have been studied for the first time, using the finite element method (FEM). The dimensional irregularities of these fibers are simulated with sine waves of different magnitude and frequency. The breaking load and breaking extension of the fibers at different twist or torsion levels are then calculated from the finite element model. The results indicate that twist and level of fiber irregularity have a major impact on the mechanical properties of the fiber and the effect of the frequency of irregularity is relatively small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Z-pinning is a newly developed technique to enhance the strength of composite laminates in the thickness direction. Recent experimental and theoretical studies have shown that z-pins significantly improve mode I and mode II fracture toughness. In practice, buckling accompanying delamination is a typical failure mode in laminated composite structures. For a complete understanding of the z-pinning technique towards improvements of the overall mechanical properties of laminated composites, a numerical model is developed in this paper to investigate the influence of z-pins on the buckling composite laminates with initial delaminations under edge-wise compression. The numerical results indicate that z-pinning can indeed effectively increase the compressive strength of the composite laminates provided that the initial imperfection is within a certain range. The magnitude of the improvement is consistent with available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanisms influencing muscle atrophy in humans are poorly understood. Atrogin-1 and MuRF1, two ubiquitin E3-ligases, mediate rodent and cell muscle atrophy and are suggested to be regulated by an Akt/Forkhead (FKHR) signaling pathway. Here we investigated the expression of atrogin-1, MuRF1, and the activity of Akt and its catabolic (FKHR and FKHRL1) and anabolic (p70s6k and GSK-3β) targets in human skeletal muscle atrophy. The muscle atrophy model used was amyotrophic lateral sclerosis (ALS). All measurements were performed in biopsies from 22 ALS patients and 16 healthy controls as well as in G93A ALS mice. ALS patients had a significant increase in atrogin-1 mRNA and protein content, which was associated with a decrease in Akt activity. There was no difference in the mRNA and protein content of FKHR, FKHRL1, p70s6k, and GSK-3β. Similar observations were made in the G93A ALS mice. Human skeletal muscle atrophy, as seen in the ALS model, is associated with an increase in atrogin-1 and a decrease in Akt. The transcriptional regulation of human atrogin-1 may be controlled by an Akt-mediated transcription factor other than FKHR or via another signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallographic rotation field for deformation in torsion is such that it is possible for orientations close to stable orientations to rotate away from the stable orientation. A Taylor type model was used to demonstrate that this phenomenon has the potential to transform randomly generated low-angle boundaries into high-angle boundaries. After imposing an equivalent strain of 1.2, up to 40% of the simulated boundaries displayed a disorientation in excess of 15°. These high-angle boundaries were characterised by a disorientation axis close to parallel with the sample radial direction. A series of hot torsion tests was carried out on 1050 aluminium to seek evidence for boundaries formed by this mechanism. A number of deformation-induced high-angle boundaries were identified. Many of these boundaries showed disorientation axes and rotation senses similar to those seen in the simulations. Between 10% and 25% of all the high-angle boundary present in samples twisted to equivalent strains between 2 and 7 could be attributed to the present mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aim to assess the effect of the lateral position compared to other body positions on patient outcomes (mortality, morbidity and clinical adverse events during and following positioning) in critically ill adult patients. We will examine the single use of the lateral position (that is on the right or left side) and repeat use of the lateral position(s) in a positioning schedule (that is lateral positioning). We plan to undertake subgroup analysis for primary disease and condition, severity of illness, the presence of assisted ventilation and angle of lateral rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims and objectives. To present a model that explicates the dimensions of change and adaptation as revealed by people who are diagnosed and live with amyotrophic lateral sclerosis/motor neurone disease.

Background. Most research about amyotrophic lateral sclerosis/motor neurone disease is medically focused on cause and cure for the illness. Although psychological studies have sought to understand the illness experience through questionnaires, little is known about the experience of living with amyotrophic lateral sclerosis/motor neurone disease as described by people with the disease.

Design. A grounded theory method of simultaneous data collection and constant comparative analysis was chosen for the conduct of this study.

Methods. Data collection involved in-depth interviews, electronic correspondence, field notes, as well as stories, prose, songs and photographs important to participants. QSR NVivo 2® software was used to manage the data and modelling used to illustrate concepts.

Findings. Participants used a cyclic, decision-making pattern about 'ongoing change and adaptation' as they lived with the disease. This pattern formed the basis of the model that is presented in this paper.

Conclusion. The lives of people living with amyotrophic lateral sclerosis/motor neurone disease revolve around the need to make decisions about how to live with the disease progression and their deteriorating abilities. Life decisions were negotiated by participants to maintain a sense of self and well-being in the face of change.

Relevance to clinical practice. The 'ongoing change and adaptation' model is a framework that can guide practitioners to understand the decision-making processes of people living with amyotrophic lateral sclerosis/motor neurone disease. Such understanding will enhance caring and promote models of care that are person-centred. The model may also have relevance for people with other life limiting diseases and their care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective
This study examines the influence of posture on the range of axial rotation of the thorax and the range and direction of the coupled lateral flexion.

Methods

The ranges of mid thoracic axial rotation and coupled lateral flexion were measured in 52 asymptomatic subjects (aged 18-43 years) using an optical motion analysis system. To examine the influence of posture on primary and coupled motion, we initiated axial rotation from a neutral sitting posture and from end-range thoracic flexion and extension.

Results
There was a significant decrease in the range of thoracic rotation in flexion compared with the neutral and extended postures (P < .001). The mean range of coupled lateral flexion was 8.9% of the axial rotation range in the neutral posture and increased to 14.3% and 23.2% in the extended and flexed postures, respectively. Patterns of coupled motion varied between subjects, but an ipsilateral pattern was more common in the flexed posture, whereas a contralateral pattern was more common in the neutral and extended postures.

Conclusions

The ranges and patterns of coupled motion of the thorax appear to be strongly influenced by the posture from which the movement is initiated. This has important implications in relation to the interpretation of clinical tests of thoracic motion and in consideration of mechanisms of development of thoracic pain disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the effect of fibre irregularities on the mechanical behaviour of the irregular fibres using the finite element method (FEM). The first part of this work examines that the effect of fibre dimensional irregularities on the linear and non-linear tensile behaviour of the fibres, using a two-dimensional (2D) finite element models. In the linear simulation, a concept of method Young’s modulus is introduced. The method Young’s modulus, breaking load and breaking extension are affected by the magnitude and frequency of diameter variation in the fibre specimen. Fibre dimensional variation and the gauge length effect are also simulated. In the non-linear analysis, some additional information is obtained on changes in the yield and post-yield regions, which are clearly shown in the load-extension curves. Further investigation is focused on the flexural buckling behaviour of fibres with dimensional irregularities. A three-dimensional (3D) finite element model is used to simulate the buckling deformation of dimensionally irregular fibres, and the critical buckling load of the simulated fibre is calculated. Two parameters, the effective length and the average diameter within the effective length of an irregular fibre, are considered to be the key factors that influence the buckling behaviour of the fibre. An important aspect of this work is the calculation of the effective length of an irregular fibre specimen during buckling. This method has not been reported before. The third part of this work is on the combined tensile and torsional behaviour of fibres with dimensional irregularities, using a three-dimensional (3D) finite element model. Two types of fibres, polyester and wool, are simulated with sine waves of different level (magnitude) and frequency at different twist levels. For the polyester fibre, experiment verification of the simulation results has been carried out, and the results indicate the FE model is well acceptable for the simulation. The final part of this work examines the combined effect of dimensional and structural irregularities on the fibre tensile behaviour. Three-dimensional (3D) finite element models are used to simulate the cracks (transverse, longitudinal, combined transverse and longitudinal cracks) and cavities distributed in uniform fibres and fibres with 30% level of diameter variation, respectively. One of important conclusions is that under the simulated conditions, the dimensional irregularity of fibre influences the tensile behaviour of fibres more than the fibre structural irregularity. The fibre dimensional irregularity affects not only the values of the breaking load and breaking extension, but also the shape of load-extension curves. However, the fibre structural irregularity simulated in the study appears to have little effect on the shape of the load-extension curves. In addition, the effect of crack or cavity size, type and distribution on fibre tensile properties is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox-active disulfides are capable of being oxidized and reduced under physiological conditions. The enzymatic role of redox-active disulfides in thiol-disulfide reductases is well-known, but redox-active disulfides are also present in non-enzymatic protein structures where they may act as switches of protein function. Here, we examine disulfides linking adjacent β-strands (cross-strand disulfides), which have been reported to be redox-active. Our previous work has established that these cross-strand disulfides have high torsional energies, a quantity likely to be related to the ease with which the disulfide is reduced. We examine the relationship between conformations of disulfides and their location in protein secondary structures. By identifying the overlap between cross-strand disulfides and various conformations, we wish to address whether the high torsional energy of a cross-strand disulfide is sufficient to confer redox activity or whether other factors, such as the presence of the cross-strand disulfide in a strained β-sheet, are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disulfide bonds formed by the oxidation of cysteine residues in proteins are the major form of intra- and inter-molecular covalent linkages in the polypeptide chain. To better understand the conformational energetics of this linkage, we have used the MP2(full)/6-31G(d) method to generate a full potential energy surface (PES) for the torsion of the model compound diethyl disulfide (DEDS) around its three critical dihedral angles (χ2, χ3, χ2′). The use of ten degree increments for each of the parameters resulted in a continuous, fine-grained surface. This allowed us to accurately predict the relative stabilities of disulfide bonds in high resolution structures from the Protein Data Bank. The MP2(full) surface showed significant qualitative differences from the PES calculated using the Amber force field. In particular, a different ordering was seen for the relative energies of the local minima. Thus, Amber energies are not reliable for comparison of the relative stabilities of disulfide bonds. Surprisingly, the surface did not show a minimum associated with χ2 − 60°, χ390, χ2′ − 60°. This is due to steric interference between Hα atoms. Despite this, significant populations of disulfides were found to adopt this conformation. In most cases this conformation is associated with an unusual secondary structure motif, the cross-strand disulfide. The relative instability of cross-strand disulfides is of great interest, as they have the potential to act as functional switches in redox processes.