965 resultados para Lagrangian drifters
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical modal and complex analysis. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. The classical modal analysis, usually applied to stationary structures, does not consider an important characteristic of rotating machinery which are the methods of forward and backward whirl. Initially, through the traditional modal analysis, axial and torsional natural frequencies were obtained in a static shaft, since they do not suffer the influence of gyroscopic effects. Later research was performed by complex modal analysis. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using MATLAB (TM) and numerical simulations were performed to validate this model. Natural frequencies and directional frequency forced response (dFRF) were obtained using the complex modal analysis for a simple vertical rotor and also for a typical drill string used in the construction of oil wells.
Resumo:
This paper addresses the single stage lot-sizing problem in parallel machines. Each item can be produced on any machine, and incurs a setup time before to start the production. The objective of this paper is to obtain lower bounds of good quality for this problem. A solution method is developed based on a reformulation of the problem and the Lagrangian relaxation of a set of constraints. Some computational results are presented comparing the proposed method with a method from the literature and with a computational package.
Resumo:
This article deals with a vector optimization problem with cone constraints in a Banach space setting. By making use of a real-valued Lagrangian and the concept of generalized subconvex-like functions, weakly efficient solutions are characterized through saddle point type conditions. The results, jointly with the notion of generalized Hessian (introduced in [Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28, 789–809 (1990)]), are applied to achieve second order necessary and sufficient optimality conditions (without requiring twice differentiability for the objective and constraining functions) for the particular case when the functionals involved are defined on a general Banach space into finite dimensional ones.
Resumo:
We have studied the physical content of the following models: Maxwell, Proca, Self-Dual and Maxwell-Chern-Simons. One method we have used is the decomposition in the so called helicity variables, which can be done in the Lagrangian formalism. It leads to the correct counting of degrees of freedom without choosing a gauge condition. The method separates the propagating modes from the non-propagating ones. The Hamiltonian of the MCS and the AD is calculated. The second method used here is the analysis of the sign of the imaginary part of the residues of the two-point amplitude of the theory, showing that the models analyzed are free of ghosts. We also carry the dimensional reduction of the Maxwell-Chern-Simons and Self-Dual models from D = 2+1 to D = 1 + 1 dimensions. Next, we show that the dimensional reduction of those equivalent models also leads to equivalent models in D=1+1. Even more interesting is the fact, demonstrated here, that those reduced models can also be connected via gauge embedding. So the gauge embedding of the Self-Dual model into the Maxwell-Chern-Simons theory is preserved by the dimensional reduction
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Física - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)