891 resultados para LONG-LASTING PHOSPHORESCENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural health monitoring has been accepted as a justified effort for long-span bridges, which are critical to a region's economic vitality. As the most heavily instrumented bridge project in the world, WASHMS - Wind And Structural Health Monitoring System has been developed and installed on the cable-supported bridges in Hong Kong (Wong and Ni 2009a). This chapter aims to share some of the experience gained through the operations and studies on the application of WASHMS. It is concluded that Structural Health Monitoring should be composed of two main components: Structural Performance Monitoring (SPM) and Structural Safety Evaluation (SSE). As an example to illustrate how the WASHMS could be used for structural performance monitoring, the layout of the sensory system installed on the Tsing Ma Bridge is briefly described. To demonstrate the two broad approaches of structural safety evaluation - Structural Health Assessment and Damage Detection, three examples in the application of SHM information are presented. These three examples can be considered as pioneer works for the research and development of the structural diagnosis and prognosis tools required by the structural health monitoring for monitoring and evaluation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of agricultural management practices to store SOC depends on C input level and how far a soil is from its saturation level (i.e. saturation deficit). The C Saturation hypothesis suggests an ultimate soil C stabilization capacity defined by four SOM pools capable of C saturation: (1) non-protected, (2) physically protected, (3) chemically protected and (4) biochemically protected. We tested if C saturation deficit and the amount of added C influenced SOC storage in measurable soil fractions corresponding to the conceptual chemical, physical, biochemical, and non-protected C pools. We added two levels of C-13- labeled residue to soil samples from seven agricultural sites that were either closer to (i.e., A-horizon) or further from (i.e., C-horizon) their C saturation level and incubated them for 2.5 years. Residue-derived C stabilization was, in most sites, directly related to C saturation deficit but mechanisms of C stabilization differed between the chemically and biochemically protected pools. The physically protected C pool showed a varied effect of C saturation deficit on C-13 stabilization, due to opposite behavior of the POM and mineral fractions. We found distinct behavior between unaggregated and aggregated mineral-associated fractions emphasizing the mechanistic difference between the chemically and physically protected C-pools. To accurately predict SOC dynamics and stabilization, C Saturation of soil C pools, particularly the chemically and biochemically protected pools, should be considered. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms play key roles in biogeochemical cycling by facilitating the release of nutrients from organic compounds. In doing so, microbial communities use different organic substrates that yield different amounts of energy for maintenance and growth of the community. Carbon utilization efficiency (CUE) is a measure of the efficiency with which substrate carbon is metabolized versus mineralized by the microbial biomass. In the face of global change, we wanted to know how temperature affected the efficiency by which the soil microbial community utilized an added labile substrate, and to determine the effect of labile soil carbon depletion (through increasing duration of incubation) on the community's ability to respond to an added substrate. Cellobiose was added to soil samples as a model compound at several times over the course of a long-term incubation experiment to measure the amount of carbon assimilated or lost as CO2 respiration. Results indicated that in all cases, the time required for the microbial community to take up the added substrate increased as incubation time prior to substrate addition increased. However, the CUE was not affected by incubation time. Increased temperature generally decreased CUE, thus the microbial community was more efficient at 15 degrees C than at 25 degrees C. These results indicate that at warmer temperatures microbial communities may release more CO2 per unit of assimilated carbon. Current climate-carbon models have a fixed CUE to predict how much CO2 will be released as soil organic matter is decomposed. Based on our findings, this assumption may be incorrect due to variation of CUE with changing temperature. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although current assessments of agricultural management practices on soil organic C (SOC) dynamics are usually conducted without any explicit consideration of limits to soil C storage, it has been hypothesized that the SOC pool has an upper, or saturation limit with respect to C input levels at steady state. Agricultural management practices that increase C input levels over time produce a new equilibrium soil C content. However, multiple C input level treatments that produce no increase in SOC stocks at equilibrium show that soils have become saturated with respect to C inputs. SOC storage of added C input is a function of how far a soil is from saturation level (saturation deficit) as well as C input level. We tested experimentally if C saturation deficit and varying C input levels influenced soil C stabilization of added C-13 in soils varying in SOC content and physiochemical characteristics. We incubated for 2.5 years soil samples from seven agricultural sites that were closer to (i.e., A-horizon) or further from (i.e., C-horizon) their C saturation limit. At the initiation of the incubations, samples received low or high C input levels of 13 C-labeled wheat straw. We also tested the effect of Ca addition and residue quality on a subset of these soils. We hypothesized that the proportion of C stabilized would be greater in samples with larger C Saturation deficits (i.e., the C- versus A-horizon samples) and that the relative stabilization efficiency (i.e., Delta SCC/Delta C input) would decrease as C input level increased. We found that C saturation deficit influenced the stabilization of added residue at six out of the seven sites and C addition level affected the stabilization of added residue in four sites, corroborating both hypotheses. Increasing Ca availability or decreasing residue quality had no effect on the stabilization of added residue. The amount of new C stabilized was significantly related to C saturation deficit, supporting the hypothesis that C saturation influenced C stabilization at all our sites. Our results suggest that soils with low C contents and degraded lands may have the greatest potential and efficiency to store added C because they are further from their saturation level. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No-tillage (NT) management has been promoted as a practice capable of offsetting greenhouse gas (GHG) emissions because of its ability to sequester carbon in soils. However, true mitigation is only possible if the overall impact of NT adoption reduces the net global warming potential (GWP) determined by fluxes of the three major biogenic GHGs (i.e. CO2, N2O, and CH4). We compiled all available data of soil-derived GHG emission comparisons between conventional tilled (CT) and NT systems for humid and dry temperate climates. Newly converted NT systems increase GWP relative to CT practices, in both humid and dry climate regimes, and longer-term adoption (>10 years) only significantly reduces GWP in humid climates. Mean cumulative GWP over a 20-year period is also reduced under continuous NT in dry areas, but with a high degree of uncertainty. Emissions of N2O drive much of the trend in net GWP, suggesting improved nitrogen management is essential to realize the full benefit from carbon storage in the soil for purposes of global warming mitigation. Our results indicate a strong time dependency in the GHG mitigation potential of NT agriculture, demonstrating that GHG mitigation by adoption of NT is much more variable and complex than previously considered, and policy plans to reduce global warming through this land management practice need further scrutiny to ensure success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the optimization of conductor size and the voltage regulator location & magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper explores the way in which the life of concrete sleepers can be dramatically affected by two important factors, namely impact forces and fatigue cycles. Drawing on the very limited experimental and field data currently available about these two factors, the paper describes detailed simulations of sleepers in a heavy haul track in Queensland Australia over a period of 100 years. The simulation uses real wheel/rail impact force records from that track, together with data on static bending tests of similar sleepers and preliminary information on their impact vs static strength. The simulations suggest that despite successful performance over many decades, large unplanned replacement costs could be imminent, especially considering the increasingly demanding operational conditions sleepers have sustained over their life. The paper also discusses the key factors track owners need to consider in attempting to plan for these developments.