962 resultados para LIGAND BINDING CHARACTERISTICS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular docking softwares are one of the important tools of modern drug development pipelines. The promising achievements of the last 10 years emphasize the need for further improvement, as reflected by several recent publications (Leach et al., J Med Chem 2006, 49, 5851; Warren et al., J Med Chem 2006, 49, 5912). Our initial approach, EADock, showed a good performance in reproducing the experimental binding modes for a set of 37 different ligand-protein complexes (Grosdidier et al., Proteins 2007, 67, 1010). This article presents recent improvements regarding the scoring and sampling aspects over the initial implementation, as well as a new seeding procedure based on the detection of cavities, opening the door to blind docking with EADock. These enhancements were validated on 260 complexes taken from the high quality Ligand Protein Database [LPDB, (Roche et al., J Med Chem 2001, 44, 3592)]. Two issues were identified: first, the quality of the initial structures cannot be assumed and a manual inspection and/or a search in the literature are likely to be required to achieve the best performance. Second the description of interactions involving metal ions still has to be improved. Nonetheless, a remarkable success rate of 65% was achieved for a large scale blind docking assay, when considering only the top ranked binding mode and a success threshold of 2 A RMSD to the crystal structure. When looking at the five-top ranked binding modes, the success rate increases up to 76%. In a standard local docking assay, success rates of 75 and 83% were obtained, considering only the top ranked binding mode, or the five top binding modes, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A photoactivated ruthenium(II) arene complex has been conjugated to two receptor-binding peptides, a dicarba analogue of octreotide and the Arg-Gly-Asp (RGD) tripeptide. These peptides can act as"tumor-targeting devices" since their receptors are overexpressed on the membranes of tumor cells. Both ruthenium-peptide conjugates are stable in aqueous solution in the dark, but upon irradiation with visible light, the pyridyl-derivatized peptides were selectively photodissociated from the ruthenium complex, as inferred by UV-vis and NMR spectroscopy. Importantly, the reactive aqua species generated from the conjugates, [(η6-p-cym)Ru(bpm)(H2O)]2+, reacted with the model DNA nucleobase 9-ethylguanine as well as with guanines of two DNA sequences, 5′dCATGGCT and 5′dAGCCATG. Interestingly, when irradiation was performed in the presence of the oligonucleotides, a new ruthenium adduct involving both guanines was formed as a consequence of the photodriven loss of p-cymene from the two monofunctional adducts. The release of the arene ligand and the formation of a ruthenated product with a multidentate binding mode might have important implications for the biological activity of such photoactivated ruthenium(II) arene complexes. Finally, photoreactions with the peptide-oligonucleotide hybrid, Phac-His-Gly-Met-linker-p5′dCATGGCT, also led to arene release and to guanine adducts, including a GG chelate. The lack of interaction with the peptide fragment confirms the preference of such organometallic ruthenium(II) complexes for guanine over other potential biological ligands, such as histidine or methionine amino acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The closely related TNF family ligands B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) serve in the generation and maintenance of mature B-lymphocytes. Both BAFF and APRIL assemble as homotrimers that bind and activate several receptors that they partially share. However, heteromers of BAFF and APRIL that occur in patients with autoimmune diseases are incompletely characterized. The N and C termini of adjacent BAFF or APRIL monomers are spatially close and can be linked to create single-chain homo- or hetero-ligands of defined stoichiometry. Similar to APRIL, heteromers consisting of one BAFF and two APRILs (BAA) bind to the receptors B cell maturation antigen (BCMA), transmembrane activator and CAML interactor (TACI) but not to the BAFF receptor (BAFFR). Heteromers consisting of one APRIL and two BAFF (ABB) bind to TACI and BCMA and weakly to BAFFR in accordance with the analysis of the receptor interaction sites in the crystallographic structure of ABB. Receptor binding correlated with activity in reporter cell line assays specific for BAFFR, TACI, or BCMA. Single-chain BAFF (BBB) and to a lesser extent single-chain ABB, but not APRIL or single-chain BAA, rescued BAFFR-dependent B cell maturation in BAFF-deficient mice. In conclusion, BAFF-APRIL heteromers of different stoichiometries have distinct receptor-binding properties and activities. Based on the observation that heteromers are less active than BAFF, we speculate that their physiological role might be to down-regulate BAFF activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest interest for adoptive cell therapy in patients with cancer. To identify these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni(2+)-nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole addition, they decay rapidly to pMHC monomers, allowing flow-cytometric-based measurements of monomeric TCR-pMHC dissociation rates of living CD8(+) T cells on a wide avidity spectrum. We documented strong correlations between NTAmer kinetic results and those obtained by surface plasmon resonance. Using NTAmers that were deficient for CD8 binding to pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the dissociation half-life several fold. Notably, our NTAmer technology accurately predicted the function of large panels of tumor-specific T cells that were isolated prospectively from patients with cancer. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding molecular recognition is one major requirement for drug discovery and design. Physicochemical and shape complementarity between two binding partners is the driving force during complex formation. In this study, the impact of shape within this process is analyzed. Protein binding pockets and co-crystallized ligands are represented by normalized principal moments of inertia ratios (NPRs). The corresponding descriptor space is triangular, with its corners occupied by spherical, discoid, and elongated shapes. An analysis of a selected set of sc-PDB complexes suggests that pockets and bound ligands avoid spherical shapes, which are, however, prevalent in small unoccupied pockets. Furthermore, a direct shape comparison confirms previous studies that on average only one third of a pocket is filled by its bound ligand, supplemented by a 50 % subpocket coverage. In this study, we found that shape complementary is expressed by low pairwise shape distances in NPR space, short distances between the centers-of-mass, and small deviations in the angle between the first principal ellipsoid axes. Furthermore, it is assessed how different binding pocket parameters are related to bioactivity and binding efficiency of the co-crystallized ligand. In addition, the performance of different shape and size parameters of pockets and ligands is evaluated in a virtual screening scenario performed on four representative targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several bioaffinity assays are based on the detection of an analyte which is bound on a solid substrate via biochemical interaction. These so called solid phase assays are based on the adhesion of the primary binding partner on a solid surface, which then binds the analyte to be detected. In this thesis work a novel solid phase based assay technology, known as spot technology, was developed. The spot technology is based on combination of high-capacity solid phases, concentrated in a spot format, utilising modified streptavidin molecules and recombinant antibody fragments. The reduction of the solid phase binding surface to a size of a spot enabled denser binding of the target molecules, providing improved signal intensities and signal-to-background ratio when applied in different solid phase immunoassays. Streptavidin-biotin interactions are commonly utilised in numerous different bioaffinity assays and the ultimate nature of streptavidin to bind biotin is among the strongest non-covalent interaction reported between two biomolecules. In this study native core streptavidin was chemically modified to provide polymerised streptavidin molecules with altered adsorption properties. These streptavidin conjugates, when coated onto polystyrene surface, provided enhanced biotin binding capacity and surface stability when compared to a reference coating constructed with native streptavidin. Furthermore, the combination of chemically modified streptavidin, sitespecifically biotinylated antibody fragments and the spot coating technology provided highly dense solid phase coating with improved binding properties. The performance of the spot assay technology was further demonstrated in different immunoassay configurations. Human thyroid stimulating hormone (TSH) and human cardiac troponin I (cTnI) were used as model analytes to show the applicability of the highly sensitive spot-based solid-phase immunoassay for detection of very low levels of analytes. It was demonstrated that the spot technology provided an assay concept with enhanced sensitivity and short turn-around times, characteristics that are highly suitable for point-of-care applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual screening is a central technique in drug discovery today. Millions of molecules can be tested in silico with the aim to only select the most promising and test them experimentally. The topic of this thesis is ligand-based virtual screening tools which take existing active molecules as starting point for finding new drug candidates. One goal of this thesis was to build a model that gives the probability that two molecules are biologically similar as function of one or more chemical similarity scores. Another important goal was to evaluate how well different ligand-based virtual screening tools are able to distinguish active molecules from inactives. One more criterion set for the virtual screening tools was their applicability in scaffold-hopping, i.e. finding new active chemotypes. In the first part of the work, a link was defined between the abstract chemical similarity score given by a screening tool and the probability that the two molecules are biologically similar. These results help to decide objectively which virtual screening hits to test experimentally. The work also resulted in a new type of data fusion method when using two or more tools. In the second part, five ligand-based virtual screening tools were evaluated and their performance was found to be generally poor. Three reasons for this were proposed: false negatives in the benchmark sets, active molecules that do not share the binding mode, and activity cliffs. In the third part of the study, a novel visualization and quantification method is presented for evaluation of the scaffold-hopping ability of virtual screening tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The general validity of the substrate mimetic concept is illustrated by the expansion of this strategy to trypsin-like, glutamic acid-specific, and hydrophobic amino acid-specific proteases. Finally, opportunities for the combination of the substrate mimetic strategy with the chemical solid-phase peptide synthesis and the use of substrate mimetics for non-peptide organic amide synthesis are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enterohemolysin produced by Escherichia coli associated with infant diarrhea showed characteristics similar to those of thiol-activated hemolysins produced by Gram-positive bacteria, including inactivation by cholesterol, lytic activity towards eukaryotic cells and thermoinstability. However, enterohemolysin activity was not inactivated by oxidation or by SH group-blocking agents (1 mM HgCl2, 1 mM iodoacetic acid) and the hemolysin (100 µg/ml) was not lethal to mice, in contrast to the lethality of the thiol-activated hemolysin family to animals. Earlier reports showed that intravenous injection of partially purified streptolysin O preparations (0.2 µg) was rapidly lethal to mice. These results suggest that E. coli enterohemolysin is not a thiol-activated hemolysin, despite its ability to bind cholesterol, probably due to the absence of free thiol-group(s) that characterize the active form of the thiol-activated hemolysin molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of chloride in the stabilization of the deoxy conformation of hemoglobin (Hb), the low oxygen affinity state, has been studied in order to identify the nature of this binding. Previous studies have shown that arginines 141α could be involved in the binding of this ion to the protein. Thus, des-Arg Hb, human hemoglobin modified by removal of the α-chain C-terminal residue Arg141α, is a possible model for studies of these interactions. The loss of Arg141α and all the salt bridges in which it participates is associated with subtle structural perturbations of the α-chains, which include an increase in the conformational flexibility and further shift to the oxy state, increasing oxygen affinity. Thus, this Hb has been the target of many studies of structural and functional behavior along with medical applications. In the present study, we describe the biochemical characterization of des-Arg Hb by electrophoresis, high-performance liquid chromatography and mass spectroscopy. The effects of chloride binding on the oxygen affinity and on the cooperativity to des-Arg Hb and to native human hemoglobin, HbA, were measured and compared. We confirm that des-Arg Hb presents high oxygen affinity and low cooperativity in the presence of bound chloride and show that the binding of chloride to des-Arg does not change its functional characteristics as observed with HbA. These results indicate that Arg141α may be involved in the chloride effect on Hb oxygenation. Moreover, they show that these residues contribute to lower Hb oxygen affinity to a level compatible with its biological function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator activator receptor-gamma (PPARγ) is a ligand-activated transcriptional factor involved in the carcinogenesis of various cancers. Insulin-like growth factor-binding protein-3 (IGFBP-3) is a tumor suppressor gene that has anti-apoptotic activity. The purpose of this study was to investigate the anticancer mechanism of PPARγ with respect to IGFBP-3. PPARγ was overexpressed in SNU-668 gastric cancer cells using an adenovirus gene transfer system. The cells in which PPARγ was overexpressed exhibited growth inhibition, induction of apoptosis, and a significant increase in IGFBP-3 expression. We investigated the underlying molecular mechanisms of PPARγ in SNU-668 cells using an IGFBP-3 promoter/luciferase reporter system. Luciferase activity was increased up to 15-fold in PPARγ transfected cells, suggesting that PPARγ may directly interact with IGFBP-3 promoter to induce its expression. Deletion analysis of the IGFBP-3 promoter showed that luciferase activity was markedly reduced in cells without putative p53-binding sites (-Δ1755, -Δ1795). This suggests that the critical PPARγ-response region is located within the p53-binding region of the IGFBP-3 promoter. We further demonstrated an increase in PPARγ-induced luciferase activity even in cells treated with siRNA to silence p53 expression. Taken together, these data suggest that PPARγ exhibits its anticancer effect by increasing IGFBP-3 expression, and that IGFBP-3 is a significant tumor suppressor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technology for the production of restructured fruit with high contents of fruit pulp using hydrocolloids as binding agents has not been fully developed. This study evaluated the effect of mixtures of sodium alginate, low methoxy pectin, and gelatin on the characteristics of yellow mombin (Spondias mombin L.) fruit gels. The results of the central composite design showed that the models obtained, except for those of water activity and soluble solids, were predictive. Gelatin was the most important factor affecting firmness, pH, and the color parameters of the structured fruit pulp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular adhesion protein-1 (VAP-1), which belongs to the copper amine oxidases (CAOs), is a validated drug target in inflammatory diseases. Inhibition of VAP-1 blocks the leukocyte trafficking to sites of inflammation and alleviates inflammatory reactions. In this study, a novel set of potent pyridazinone inhibitors is presented together with their X-ray structure complexes with VAP-1. The crystal structure of serum VAP-1 (sVAP-1) revealed an imidazole binding site in the active site channel and, analogously, the pyridazinone inhibitors were designed to bind into the channel. This is the first time human VAP-1 has been crystallized with a reversible inhibitor and the structures reveal detailed information of the binding mode on the atomic level. Similarly to some earlier studied inhibitors of human VAP-1, the designed pyridazinone inhibitors bind rodent VAP-1 with a lower affinity than human VAP-1. Therefore, we made homology models of rodent VAP-1 and compared human and rodent enzymes to determine differences that might affect the inhibitor binding. The comparison of the crystal structures of the human VAP-1 and the mouse VAP-1 homology model revealed key differences important for the species specific binding properties. In general, the channel in mouse VAP-1 is more narrow and polar than the channel in human VAP-1, which is wider and more hydrophobic. The differences are located in the channel leading to the active site, as well as, in the entrance to the active site channel. The information obtained from these studies is of great importance for the development and design of drugs blocking the activity of human VAP-1, as rodents are often used for in vivo testing of candidate drugs. In order to gain more insight into the selective binding properties of the different CAOs in one species a comprehensive evolutionary study of mammalian CAOs was performed. We found that CAOs can be classified into sub-families according to the residues X1 and X2 of the Thr/Ser-X1-X2-Asn-Tyr-Asp active site motif. In the phylogenetic tree, CAOs group into diamine oxidase, retina specific amine oxidase and VAP-1/serum amine oxidase clades based on the residue in the position X2. We also found that VAP-1 and SAO can be further differentiated based on the residue in the position X1. This is the first large-scale comparison of CAO sequences, which explains some of the reasons for the unique substrate specificities within the CAO family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrins are cell surface adhesion and signaling receptors. Cells use integrins to attach to the extracellular matrix and to other cells, as well as for sensing their environment. In addition to adhesion and migration, integrins have been shown to be important for many biological processes including apoptosis, cell proliferation, and differentiation into specific tissues. Many important next generation biological drugs inhibit integrin functions. Thus, research into interactions between integrins and their ligands under different physiological and pathological conditions is not only of academic interest, but is also important for the field of drug discovery. In this Ph.D. project, the functions of integrin-ligand interactions were studied under different physiologically interesting conditions including 1) human echovirus 1 binding to integrin α2β1, 2) integrin α2β1 binding to collagen under flow conditions, 3) integrin α2β1 binding to a ligand in the presence of the angiogenesis inhibitor histidine rich glycoprotein (HRG) and 4) integrin binding to posttranslationally citrullinated ligands. As a result of the project, we could show that for each condition the integrin-ligand interaction is somewhat unconventional. 1) Echovirus 1 binds only to non-activated conformations of integrin α2β1. 2) Surprisingly, the non-activated conformation is also the primary conformation of integrin α2β1 when it binds to collagen under flow conditions, like when platelets adhere to subendothelial collagen in vascular injuries. In addition, the pre-activation of integrin α2β1 does not increase adhesion under flow. 3) HRG binds to integrin α2β1 through a low-affinity interaction that inhibits integrin binding to collagen. This shows that low affinity interactions could be biologically relevant and possibly regulate angiogenesis. 4) The citrullination of collagen, a posttranslational modification reported to occur in rheumatoid arthritis, specifically inhibits the binding of integrin α10β1 and α11β1, but does not affect the binding of α1β1 ja α2β1. On the other hand, the citrullination of isoDGR in fibronectin and RGD in pro-TGF- β:n inhibit integrin binding completely. Citrullination seems to be an inflammation related process and integrin ligands become citrullinated frequently in vivo. This Ph.D. thesis suggests that unconventional interaction mechanisms between integrins and their ligands, such as posttranslational modifications, low affinity interactions, and non-activated integrin conformations, can have an important role in pathological processes. The study of these kinds of integrin-ligand interactions is important for understanding biological phenomena more deeply. The research might also be beneficial for the development of integrin based therapies for treating diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism whereby cytochrome £ oxidase catalyses elec-. tron transfer from cytochrome £ to oxygen remains an unsolved problem. Polarographic and spectrophotometric activity measurements of purified, particulate and soluble forms of beef heart mitochondrial cytochrome c oxidase presented in this thesis confirm the following characteristics of the steady-state kinetics with respect to cytochrome £: (1) oxidation of ferrocytochrome c is first order under all conditions. -(2) The relationship between sustrate concentration and velocity is of the Michaelis-Menten type over a limited range of substrate. concentrations at high ionic strength. (3) ~he reaction rate is independent from oxygen concentration until very low levels of oxygen. (4) "Biphasic" kinetic plots of enzyme activity as a function of substrate concentration are found when the range of cytochrome c concentrations is extended; the biphasicity ~ is more apparent in low ionic strength buffer. These results imply two binding sites for cytochrome £ on the oxidase; one of high affinity and one of low affinity with Km values of 1.0 pM and 3.0 pM, respectively, under low ionic strength conditions. (5) Inhibition of the enzymic rate by azide is non-c~mpetitive with respect to cytochrome £ under all conditions indicating an internal electron transfer step, and not binding or dissociation of £ from the enzyme is rate limiting. The "tight" binding of cytochrome '£ to cytochrome c oxidase is confirmed in column chromatographic experiments. The complex has a cytochrome £:oxidase ratio of 1.0 and is dissociated in media of high ionic strength. Stopped-flow spectrophotometric studies of the reduction of equimolar mixtures and complexes of cytochrome c and the oxidase were initiated in an attempt to assess the functional relevance of such a complex. Two alternative routes -for reduction of the oxidase, under conditions where the predominant species is the £ - aa3 complex, are postulated; (i) electron transfer via tightly bound cytochrome £, (ii) electron transfer via a small population of free cytochrome c interacting at the "loose" binding site implied from kinetic studies. It is impossible to conclude, based on the results obtained, which path is responsible for the reduction of cytochrome a. The rate of reduction by various reductants of free cytochrome £ in high and low ionic strength and of cytochrome £ electrostatically bound to cytochrome oxidase was investigated. Ascorbate, a negatively charged reagent, reduces free cytochrome £ with a rate constant dependent on ionic strength, whereas neutral reagents TMPD and DAD were relatively unaffected by ionic strength in their reduction of cytochrome c. The zwitterion cysteine behaved similarly to uncharged reductants DAD and TI~PD in exhibiting only a marginal response to ionic strength. Ascorbate reduces bound cytochrome £ only slowly, but DAD and TMPD reduce bound cytochrome £ rapidly. Reduction of cytochrome £ by DAD and TMPD in the £ - aa3 complex was enhanced lO-fold over DAD reduction of free £ and 4-fold over TMPD reduction of free c. Thus, the importance of ionic strength on the reactivity of cytochrome £ was observed with the general conclusion being that on the cytochrome £ molecule areas for anion (ie. phosphate) binding, ascorbate reduction and complexation to the oxidase overlap. The increased reducibility for bound cytochrome £ by reductants DAD and TMPD supports a suggested conformational change of electrostatically bound c compare.d to free .£. In addition, analysis of electron distribution between cytochromes £ and a in the complex suggest that the midpotential of cytochrome ~ changes with the redox state of the oxidase. Such evidence supports models of the oxidase which suggest interactions within the enzyme (or c - enzyme complex) result in altered midpoint potentials of the redox centers.