946 resultados para LENGTH ALTERNATION
Resumo:
Biological Crossover occurs during the early stages of meiosis. During this process the chromosomes undergoing crossover are synapsed together at a number of homogenous sequence sections, it is within such synapsed sections that crossover occurs. The SVLC (Synapsing Variable Length Crossover) Algorithm recurrently synapses homogenous genetic sequences together in order of length. The genomes are considered to be flexible with crossover only being permitted within the synapsed sections. Consequently, common sequences are automatically preserved with only the genetic differences being exchanged, independent of the length of such differences. In addition to providing a rationale for variable length crossover it also provides a genotypic similarity metric for variable length genomes enabling standard niche formation techniques to be utilised. In a simple variable length test problem the SVLC algorithm outperforms current variable length crossover techniques.
Synapsing variable length crossover: An algorithm for crossing and comparing variable length genomes
Resumo:
The Synapsing Variable Length Crossover (SVLC) algorithm provides a biologically inspired method for performing meaningful crossover between variable length genomes. In addition to providing a rationale for variable length crossover it also provides a genotypic similarity metric for variable length genomes enabling standard niche formation techniques to be used with variable length genomes. Unlike other variable length crossover techniques which consider genomes to be rigid inflexible arrays and where some or all of the crossover points are randomly selected, the SVLC algorithm considers genomes to be flexible and chooses non-random crossover points based on the common parental sequence similarity. The SVLC Algorithm recurrently "glues" or synapses homogenous genetic sub-sequences together. This is done in such a way that common parental sequences are automatically preserved in the offspring with only the genetic differences being exchanged or removed, independent of the length of such differences. In a variable length test problem the SVLC algorithm is shown to outperform current variable length crossover techniques. The SVLC algorithm is also shown to work in a more realistic robot neural network controller evolution application.
Resumo:
The synapsing variable-length crossover (SVLC algorithm provides a biologically inspired method for performing meaningful crossover between variable-length genomes. In addition to providing a rationale for variable-length crossover, it also provides a genotypic similarity metric for variable-length genomes, enabling standard niche formation techniques to be used with variable-length genomes. Unlike other variable-length crossover techniques which consider genomes to be rigid inflexible arrays and where some or all of the crossover points are randomly selected, the SVLC algorithm considers genomes to be flexible and chooses non-random crossover points based on the common parental sequence similarity. The SVLC algorithm recurrently "glues" or synapses homogenous genetic subsequences together. This is done in such a way that common parental sequences are automatically preserved in the offspring with only the genetic differences being exchanged or removed, independent of the length of such differences. In a variable-length test problem, the SVLC algorithm compares favorably with current variable-length crossover techniques. The variable-length approach is further advocated by demonstrating how a variable-length genetic algorithm (GA) can obtain a high fitness solution in fewer iterations than a traditional fixed-length GA in a two-dimensional vector approximation task.
Resumo:
Searching for the optimum tap-length that best balances the complexity and steady-state performance of an adaptive filter has attracted attention recently. Among existing algorithms that can be found in the literature, two of which, namely the segmented filter (SF) and gradient descent (GD) algorithms, are of particular interest as they can search for the optimum tap-length quickly. In this paper, at first, we carefully compare the SF and GD algorithms and show that the two algorithms are equivalent in performance under some constraints, but each has advantages/disadvantages relative to the other. Then, we propose an improved variable tap-length algorithm using the concept of the pseudo fractional tap-length (FT). Updating the tap-length with instantaneous errors in a style similar to that used in the stochastic gradient [or least mean squares (LMS)] algorithm, the proposed FT algorithm not only retains the advantages from both the SF and the GD algorithms but also has significantly less complexity than existing algorithms. Both performance analysis and numerical simulations are given to verify the new proposed algorithm.
Resumo:
This work investigates the optimum decision delay and tap-length of the finite-length decision feedback equalizer. First we show that, if the feedback filter (FBF) length Nb is equal to or larger than the channel memory v and the decision delay Δ is smaller than the feedforward filter (FFF) length Nf, then only the first Δ+1 elements of the FFF can be nonzero. Based on this result we prove that the maximum effective FBF length is equal to the channel memory v, and if Nb ≥ v and Nf is long enough, the optimum decision delay that minimizes the MMSE is Nf-1.
Resumo:
The power of an adaptive equalizer is maximized when the structural parameters including the tap-length and decision delay can be optimally chosen. Although the method for adjusting either the tap-length or decision delay has been proposed, adjusting both simultaneously becomes much more involved as they interact with each other. In this paper, this problem is solved by putting a linear prewhitener before the equalizer, with which the equivalent channel becomes maximum-phase. This implies that the optimum decision delay can be simply ¯xed at the tap-length minus one, while the tap-length can then be chosen using a similar approach as that proposed in our previous work.
Resumo:
This paper investigates how to choose the optimum tap-length and decision delay for the decision feedback equalizer (DFE). Although the feedback filter length can be set as the channel memory, there is no closed-form expression for the feedforward filter length and decision delay. In this paper, first we analytically show that the two dimensional search for the optimum feedforward filter length and decision delay can be simplified to a one dimensional search, and then describe a new adaptive DFE where the optimum structural parameters can be self-adapted.
Resumo:
Most existing models of language production and speech motor control do not explicitly address how language requirements affect speech motor functions, as these domains are usually treated as separate and independent from one another. This investigation compared lip movements during bilabial closure between five individuals with mild aphasia and five age and gender-matched control speakers when the linguistic characteristics of the stimuli were varied by increasing the number of syllables. Upper and lower lip movement data were collected for mono-, bi- and tri-syllabic nonword sequences using an AG 100 EMMA system. Each task was performed under both normal and fast rate conditions. Single articulator kinematic parameters (peak velocity, amplitude, duration,and cyclic spatio-temporal index) were measured to characterize lip movements. Results revealed that compared to control speakers, individuals with aphasia showed significantly longer movement duration and lower movement stability for longer items (bi- and tri-syllables). Moreover, utterance length affected the lip kinematics, in that the monosyllables had smaller peak velocities, smaller amplitudes and shorter durations compared to bi- and trisyllables, and movement stability was lowest for the trisyllables. In addition, the rate-induced changes (smaller amplitude and shorter duration with increased rate) were most prominent for the short items (i.e., monosyllables). These findings provide further support for the notion that linguistic changes have an impact on the characteristics of speech movements, and that individuals with aphasia are more affected by such changes than control speakers.
Resumo:
Many numerical models for weather prediction and climate studies are run at resolutions that are too coarse to resolve convection explicitly, but too fine to justify the local equilibrium assumed by conventional convective parameterizations. The Plant-Craig (PC) stochastic convective parameterization scheme, developed in this paper, solves this problem by removing the assumption that a given grid-scale situation must always produce the same sub-grid-scale convective response. Instead, for each timestep and gridpoint, one of the many possible convective responses consistent with the large-scale situation is randomly selected. The scheme requires as input the large-scale state as opposed to the instantaneous grid-scale state, but must nonetheless be able to account for genuine variations in the largescale situation. Here we investigate the behaviour of the PC scheme in three-dimensional simulations of radiative-convective equilibrium, demonstrating in particular that the necessary space-time averaging required to produce a good representation of the input large-scale state is not in conflict with the requirement to capture large-scale variations. The resulting equilibrium profiles agree well with those obtained from established deterministic schemes, and with corresponding cloud-resolving model simulations. Unlike the conventional schemes the statistics for mass flux and rainfall variability from the PC scheme also agree well with relevant theory and vary appropriately with spatial scale. The scheme is further shown to adapt automatically to changes in grid length and in forcing strength.