971 resultados para LASER FLUORESCENCE METHOD
Resumo:
BACKGROUND: In recent decades, low-level laser therapy (LLLT) has been widely used to relieve pain caused by different musculoskeletal disorders. Though widely used, its reported therapeutic outcomes are varied and conflicting. Results similarly conflict regarding its usage in patients with nonspecific chronic low back pain (NSCLBP). This study investigated the efficacy of low-level laser therapy (LLLT) for the treatment of NSCLBP by a systematic literature search with meta-analyses on selected studies. METHOD: MEDLINE, EMBASE, ISI Web of Science and Cochrane Library were systematically searched from January 2000 to November 2014. Included studies were randomized controlled trials (RCTs) written in English that compared LLLT with placebo treatment in NSCLBP patients. The efficacy effect size was estimated by the weighted mean difference (WMD). Standard random-effects meta-analysis was used, and inconsistency was evaluated by the I-squared index (I(2)). RESULTS: Of 221 studies, seven RCTs (one triple-blind, four double-blind, one single-blind, one not mentioning blinding, totaling 394 patients) met the criteria for inclusion. Based on five studies, the WMD in visual analog scale (VAS) pain outcome score after treatment was significantly lower in the LLLT group compared with placebo (WMD = -13.57 [95 % CI = -17.42, -9.72], I(2) = 0 %). No significant treatment effect was identified for disability scores or spinal range of motion outcomes. CONCLUSIONS: Our findings indicate that LLLT is an effective method for relieving pain in NSCLBP patients. However, there is still a lack of evidence supporting its effect on function.
Resumo:
This study presents a methods evaluation and intercalibration of active fluorescence-based measurements of the quantum yield ( inline image) and absorption coefficient ( inline image) of photosystem II (PSII) photochemistry. Measurements of inline image, inline image, and irradiance (E) can be scaled to derive photosynthetic electron transport rates ( inline image), the process that fuels phytoplankton carbon fixation and growth. Bio-optical estimates of inline image and inline image were evaluated using 10 phytoplankton cultures across different pigment groups with varying bio-optical absorption characteristics on six different fast-repetition rate fluorometers that span two different manufacturers and four different models. Culture measurements of inline image and the effective absorption cross section of PSII photochemistry ( inline image, a constituent of inline image) showed a high degree of correspondence across instruments, although some instrument-specific biases are identified. A range of approaches have been used in the literature to estimate inline image and are evaluated here. With the exception of ex situ inline image estimates from paired inline image and PSII reaction center concentration ( inline image) measurements, the accuracy and precision of in situ inline image methodologies are largely determined by the variance of method-specific coefficients. The accuracy and precision of these coefficients are evaluated, compared to literature data, and discussed within a framework of autonomous inline image measurements. This study supports the application of an instrument-specific calibration coefficient ( inline image) that scales minimum fluorescence in the dark ( inline image) to inline image as both the most accurate in situ measurement of inline image, and the methodology best suited for highly resolved autonomous inline image measurements.
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.
Resumo:
The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.
Resumo:
We set out aspects of a numerical algorithm used in solving the full-dimensionality time-dependent Schrodinger equation describing the electronic motion of the hydrogen molecular ion driven by an intense, linearly polarized laser pulse aligned along the molecular axis. This algorithm has been implemented within the fixed inter-nuclear separation approximation in a parallel computer code, a brief summary of which is given. Ionization rates are calculated and compared with results from other methods, notably the time-independent Floquet method. Our results compare very favourably with the precise predictions of the Floquet method, although there is some disagreement with other wavepacket calculations. Visualizations of the electron dynamics are also presented in which electron rescattering is observed.
Resumo:
We present a technique for simultaneous focusing and energy selection of high-current, mega-electron volt proton beams With the use of radial, transient electric fields (107 to 1010 volts per meter) triggered on the inner walls of a hollow microcylinder by an intense subpicosecond laser pulse. Because of the transient nature of the focusing fields, the proposed method allows selection of a desired range out of the spectrum of the polyenergetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, such as their broad spectrum and divergence at the source.
Resumo:
The ionization dynamics of H2 + exposed to high-intensity, high-frequency, ultrashort laser pulses is investigated with two theoretical approaches. The time-dependent Schrödinger equation is solved by a direct numerical method, and a simple two-center interference-diffraction model is studied. The energy and angular distributions of the photoelectron for various internuclear distances and relative orientations between the internuclear axis of the molecule and the polarization of the field are calculated. The main features of the photoelectron spectrum pattern are described well by the interference-diffraction model, and excellent quantitative agreement between the two methods is found. The effect of quantal vibration on the photoelectron spectrum is also calculated. We find that vibrational average produces some broadening of the main features, but that the patterns remain clearly distinguishable.
Resumo:
An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.
Resumo:
Sputtered silicon is investigated as a bonding layer for transfer of pre-processed silicon layers to various insulating substrates. Although the material appears suitable for low temperature processing, previous work has shown that gas trapped in the pores of the sputtered material is released at temperatures above 350 degrees C and further increases of temperature lead to destruction of any bonded interface. Pre-annealing at 1000 degrees C before bonding drives out gas and/or seals the surface, but for device applications where processing temperatures must be kept below about 300 degrees C, this technique cannot be used. In the current work, we have investigated the effect of excimer laser-annealing to heat the sputtered silicon surface to high temperature whilst minimising heating of the underlying substrate. Temperature profile simulations are presented and the results of RBS, TEM and AFM used to characterise the annealed layers. The results verify that gases are present in the sub-surface layers and suggest that while sealing of the surface is important for suppression of the out-diffusion of gases, immediate surface gas removal may also play a role. The laser-annealing technique appears to be an effective method of treating sputtered silicon, yielding a low roughness surface suitable for wafer bonding, thermal splitting and layer transfer.
Resumo:
An alternative method for monitoring protein-protein interactions in Saccharomyces cerevisiae has been developed. It relies on the ability of two fragments of enhanced green fluorescent protein (EGFP) to reassemble and fluoresce when fused to interacting proteins. Since this fluorescence can be detected in living cells, simultaneous detection and localisation of interacting pairs is possible. DNA sequences encoding N- and C-terminal EGFP fragments flanked by sequences from the genes of interest were transformed into S. cerevisicie JPY5 cells and homologous recombination into the genome verified by PCR. The system was evaluated by testing known interacting proteins: labelling of the phosphofructokinase subunits, Pfk1p and Pfk2p, with N- and C-terminal EGFP fragments, respectively, resulted in green fluorescence in the cytoplasm. The system works in other cellular compartments: labelling of Idh1p and Idh2p, (mitochondrial matrix), Sdh3p and Sdh4p (mitochondrial membrane) and Pap2p and Mtr4p (nucleus) all resulted in fluorescence in the appropriate cellular compartment. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Measurements of collisional de-excitation (quenching) coefficients required for the interpretation of emission and fluorescence spectroscopic measurements are reported. Particular attention is turned on argon transitions which are of interest for actinometric determinations of atomic ground state populations and on fluorescence lines originating from excited atoms and noble gases in connection with two-photon excitation (TALIF) of atomic radicals. A novel method is described which allows to infer quenching coefficients for collisions with molecular hydrogen of noble gas states in the energy range up to 24 eV. The excitation is performed in these experiments by collisions of energetic electrons in the sheath of an RF excited hydrogen plasma during the field reversal phase which lasts about 10 ns. We describe in addition a calibration method - including quenching effects - for the determination by TALIF of absolute atomic radical densities of hydrogen, nitrogen and oxygen using two-photon resonances in noble gases close by the resonances of the species mentioned. The paper closes with first ideas on a novel technique to bypass quenching effects in TALIF by introducing an additional, controllable loss by photoionization that will allow quenching-free determination of absolute atomic densities with prevalent nanosecond laser systems in situations where collisional de-excitation dominates over spontaneous emission.
Resumo:
It has been shown that a femtosecond plasma of cluster targets is an almost isotropic source of fast ions and, hence, can be used to obtain ionographic images with a wide field of view. The spatial resolution of the resulting ionographic images is no worse than 600 nm, which corresponds to a uniquely high value of about 105 of the ratio of the field of view to the resolution. The use of 100–300-keV ion fluxes ensures the sensitivity of the method to the sample thickness of no worse than 100 nm even for samples consisting of light chemical elements (C, H). The proposed method can be used to obtain images of low-contrast biological objects, thin films, membranes, and other nanostructured objects.
Resumo:
Background: The work in this study appraised photodynamic treatment (PDT) as a treatment method for vulval intraepithelial neoplasia (VIN) using a novel bioadhesive patch to deliver aminolevulinic acid. An analysis of changes in expression of apoptotic and cell cycle proteins (p53, p21, Mdm2, Blc-2, Bax, Ki-67) in response to PDT was evaluated. Methods: PDT was performed using non-laser light, either as a one or two-cycle treatment, with clinical and pathological assessment following after 6 weeks. Twenty-three patients with 25 VIN lesions underwent 49 cycles of PDT Patches were designed to conform to uneven vulval skin and contained 38 mg cm(-2) aminolevulinic acid. Assessment was carried out at 6 weeks post-treatment. Patient-based treatment assessment, along with clinical and pathological changes, were monitored. Immunohistochemical staining was used to elucidate a possible biomolecular basis for induced cellular changes. Results: Most patients (52%) reported a symptomatic response, with normal pathology restored in 38% of lesions. The patch was easy to apply and remove, causing minimal discomfort. Fluorescence inspection confirmed protoporphyrin accumulation. Pain during implementation of PDT was problematic, necessitating some form of local analgesia. Changes in expression of cell cycle and apoptotic-related proteins suggested involvement of apoptotic pathways. Down regulation of p21 and inverse changes in Bcl-2 and Bax were key findings. Conclusion: Treatment of VIN lesions using a novel bioadhesive patch induced changes in cell cycle and apoptotic proteins in response to PDT with possible utilisation of apoptotic pathways. The efficacy of PDT in treating VIN could be improved by a better understanding of these apoptotic mechanisms, the influence of factors, such as HPV status, and of the need for effective pain management.
Resumo:
We report a new method which allows sequential and non-sequential double-ionization rates in laser-driven helium to be distinguished and calculated separately. The method is applied to calculate such rates for two laser pulses, one of 0.236 au frequency and 8.0 × 1015 W cm-2 peak intensity, the other of 1.0 au frequency and also of 8.0 × 1015 W cm-2 peak intensity.
Resumo:
Simultaneous optical absorption and laser-induced fluorescence measurements have been used to map the three-dimensional number densities of ground-state ions and neutrals within a low-temperature KrF laser-produced magnesium plasma expanding into vacuum. Data is reported for the symmetry plane of the plasma, which includes the laser interaction point at a delay of 1 μs after the ∼30 ns KrF laser ablation pulse and for a laser fluence of 2 J cm−2 on target. The number density distributions of ion and neutral species within this plane indicate that two distinct regions exist within the plume; one is a fast component containing ions and neutrals at maximum densities of ∼3×1013 cm−3 and ∼4×1012 cm−3, respectively and the second is a high-density region containing slow neutral species, at densities up to ∼1×1015 cm−3.